所属成套资源:江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编
江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:13解答题中档题一
展开
这是一份江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:13解答题中档题一,共24页。试卷主要包含了•,其中m=2,解方程,解不等式组等内容,欢迎下载使用。
13解答题中档题一
(真题来源于苏州卷,南京卷,南通卷,镇江卷,无锡卷,常州卷,盐城卷,淮安卷,徐州卷,宿迁卷,扬州卷,泰州卷,连云港卷)
一.分式的化简求值(共1小题)
1.(2021•盐城)先化简,再求值:(1+)•,其中m=2.
二.二元一次方程组的解(共1小题)
2.(2021•扬州)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.
三.二元一次方程组的应用(共1小题)
3.(2021•泰州)甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?
四.解一元二次方程-因式分解法(共1小题)
4.(2021•徐州)(1)解方程:x2﹣4x﹣5=0;
(2)解不等式组:.
五.分式方程的应用(共3小题)
5.(2021•徐州)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?
6.(2021•常州)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?
7.(2021•扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
六.解一元一次不等式组(共1小题)
8.(2021•连云港)解不等式组:.
七.一次函数的应用(共2小题)
9.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:
A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;
B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.
例如,一次购物的商品原价为500元,
去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);
去B超市的购物金额为:100+(500﹣100)×0.8=420(元).
(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;
(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.
10.(2021•盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:
该地区每周接种疫苗人数统计表
周次
第1周
第2周
第3周
第4周
第5周
第6周
第7周
第8周
接种人数(万人)
7
10
12
18
25
29
37
42
根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为y=6x﹣6),那么这条直线可近似反映该地区接种人数的变化趋势.
请根据以上信息,解答下列问题:
(1)这八周中每周接种人数的平均数为 万人;该地区的总人口约为 万人;
(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.
①估计第9周的接种人数约为 万人;
②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?
(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少a(a>0)万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果a=1.8,那么该地区的建议接种人群最早将于第几周全部完成接种?
八.反比例函数综合题(共1小题)
11.(2021•泰州)如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.
(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;
(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k的值.
你选择的条件是 (只填序号).
九.二次函数图象与系数的关系(共1小题)
12.(2021•泰州)二次函数y=﹣x2+(a﹣1)x+a(a为常数)图象的顶点在y轴右侧.
(1)写出该二次函数图象的顶点横坐标(用含a的代数式表示);
(2)该二次函数表达式可变形为y=﹣(x﹣p)(x﹣a)的形式,求p的值;
(3)若点A(m,n)在该二次函数图象上,且n>0,过点(m+3,0)作y轴的平行线,与二次函数图象的交点在x轴下方,求a的范围.
一十.二次函数图象与几何变换(共1小题)
13.(2021•盐城)已知抛物线y=a(x﹣1)2+h经过点(0,﹣3)和(3,0).
(1)求a、h的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
一十一.二次函数的应用(共3小题)
14.(2021•淮安)某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.
(1)求y与x的函数表达式;
(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?
15.(2021•泰州)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).
(1)求直线AB的函数关系式;
(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?
16.(2021•扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 元;当每个公司租出的汽车为 辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
一十二.二次函数综合题(共2小题)
17.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
18.(2021•连云港)如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).
(1)求m的值和直线BC对应的函数表达式;
(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;
(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
一十三.全等三角形的判定与性质(共2小题)
19.(2021•常州)如图,B、F、C、E是直线l上的四点,AB∥DE,AB=DE,BF=CE.
(1)求证:△ABC≌△DEF;
(2)将△ABC沿直线l翻折得到△A′BC.
①用直尺和圆规在图中作出△A′BC(保留作图痕迹,不要求写作法);
②连接A′D,则直线A′D与l的位置关系是 .
20.(2021•南京)如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.
(1)求证△AOB≌△DOC;
(2)若AB=2,BC=3,CE=1,求EF的长.
一十四.直线与圆的位置关系(共2小题)
21.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
22.(2021•淮安)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若CD=3,DE=,求⊙O的直径.
【参考答案】
一.分式的化简求值(共1小题)
1.(2021•盐城)先化简,再求值:(1+)•,其中m=2.
【解析】解:原式=()•,
=•,
=m+1,
∵m=2,
∴m+1=2+1=3.
二.二元一次方程组的解(共1小题)
2.(2021•扬州)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.
【解析】解:方程组,
把②代入①得:2(y﹣1)+y=7,
解得:y=3,代入①中,
解得:x=2,
把x=2,y=3代入方程ax+y=4得,2a+3=4,
解得:a=.
三.二元一次方程组的应用(共1小题)
3.(2021•泰州)甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?
【解析】解:设甲工程队原计划平均每月修建xkm,乙工程队原计划平均每月修建ykm,
根据题意得,,
解得,
答:甲工程队原计划平均每月修建2 km,乙工程队原计划平均每月修建3 km.
四.解一元二次方程-因式分解法(共1小题)
4.(2021•徐州)(1)解方程:x2﹣4x﹣5=0;
(2)解不等式组:.
【解析】解:(1)x2﹣4x﹣5=0,
(x﹣5)(x+1)=0,
x﹣5=0或x+1=0,
解得:x1=5,x2=﹣1;
(2),
解不等式①,得x≤2,
解不等式②,得x<﹣3,
所以不等式组的解集是x<﹣3.
五.分式方程的应用(共3小题)
5.(2021•徐州)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?
【解析】解:设该商品打折前每件x元,则打折后每件0.8x元,
根据题意得,+2=,
解得,x=50,
检验:经检验,x=50是原方程的解.
答:该商品打折前每件50元.
6.(2021•常州)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?
【解析】解:设该景点在设施改造后平均每天用水x吨,则在改造前平均每天用水2x吨,
根据题意,得﹣=5.
解得x=2.
经检验:x=2是原方程的解,且符合题意.
答:该景点在设施改造后平均每天用水2吨.
7.(2021•扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
【解析】解:设原先每天生产x万剂疫苗,
由题意可得:,
解得:x=40,
经检验:x=40是原方程的解,
∴原先每天生产40万剂疫苗.
六.解一元一次不等式组(共1小题)
8.(2021•连云港)解不等式组:.
【解析】解:解不等式3x﹣1≥x+1,得:x≥1,
解不等式x+4<4x﹣2,得:x>2,
∴原不等式组的解集为x>2.
七.一次函数的应用(共2小题)
9.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:
A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;
B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.
例如,一次购物的商品原价为500元,
去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);
去B超市的购物金额为:100+(500﹣100)×0.8=420(元).
(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;
(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.
【解析】解:(1)由题意可得,当x≤300时,yA=0.9x;当x>300时,yA=0.9×300+0.7(x﹣300)=0.7x+60,
故;
当x>100时,yB=100+0.8(x﹣100)=0.8x+20;
;
(2)由题意,得0.9x>0.8x+20,解得x>200,
∴200<x≤300时,到B超市更省钱;
0.7x+60>0.8x+20,解得x<400,
∴300<x<400,到B超市更省钱;
0.7x+60=0.8x+20,解得x=400,
∴当x=400时,两家超市一样;
0.7x+60<0.8x+20,解得x>400,
∴当x>400时,到A超市更省钱;
综上所述,当200<x<400到B超市更省钱;当x=400时,两家超市一样;当x>400时,到A超市更省钱.
10.(2021•盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:
该地区每周接种疫苗人数统计表
周次
第1周
第2周
第3周
第4周
第5周
第6周
第7周
第8周
接种人数(万人)
7
10
12
18
25
29
37
42
根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为y=6x﹣6),那么这条直线可近似反映该地区接种人数的变化趋势.
请根据以上信息,解答下列问题:
(1)这八周中每周接种人数的平均数为 22.5 万人;该地区的总人口约为 800 万人;
(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.
①估计第9周的接种人数约为 48 万人;
②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?
(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少a(a>0)万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果a=1.8,那么该地区的建议接种人群最早将于第几周全部完成接种?
【解析】解:(1)∵(万人),
∴这八周中每周接种人数的平均数为22.5万人.
∵(7+10+12+18+25+29+37+42)÷22.5%=800(万人),
∴该地区的总人口约为800万人.
故答案为:22.5;800.
(2)①∵当x=9时,y=6x﹣6=6×9﹣6=48,
∴估计第9周的接种人数约为48万人.
故答案为:48;
②∵疫苗接种率至少达60%,
∴实现全民免疫所需的接种人数为800×60%=480(万人).
设最早到第x周,该地区可达到实现全民免疫的标准,
则由题意可得接种的总人数为180+(6×9﹣6)+(6×10﹣6)+•••+(6x﹣6).
∴180+(6×9﹣6)+(6×10﹣6)+•••+(6x﹣6)≥480.
化简得:(x+7)(x﹣8)≥100.
∵当x=13时,(13+7)(13﹣8)=20×5=100,
∴最早到第13周,该地区可达到实现全民免疫的标准.
(3)由题意得:第9周的接种人数为42﹣1.8=40.2(万).
第10周的接种人数为42﹣1.8×2,第11周的接种人数为42﹣1.8×3,•••第,x周的接种人数为42﹣1.8×(x﹣8),
设第x周接种人数y不低于20万人,
即:y=42﹣1.8(x﹣8)≥20.
∴﹣1.8x+56.4≥20.
解得:x≤.
∴当x=20周时,接种人数不低于20万人,当x=21周时,低于20万人;
∴从第9周开始周接种人数y=.
∴当x≥21时,总接种人数为:
180+56.4﹣1.8×9+56.4﹣1.8×10+•••+56.4﹣1.8×20+20(x﹣20)≥800(1﹣21%).
解得:x≥24.42.
∴当x为25周时全部完成接种.
八.反比例函数综合题(共1小题)
11.(2021•泰州)如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.
(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;
(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k的值.
你选择的条件是 ① (只填序号).
【解析】解:(1)根据图象可知,y1>y2,
∵点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=(k<0)的图象上,
∴y1=﹣,y2=﹣,
∵k<0,
∴﹣>﹣>0,即y1>y2.
(2)选择①作为条件;
由(1)可得,A(﹣2,﹣),B(﹣6,﹣),
∴OC=2,BD=6,AC=﹣,OD=﹣
∴DE=OC=2,EC=OD=﹣,
∵四边形OCED的面积为2,
∴2×(﹣)=2,解得k=﹣6.
九.二次函数图象与系数的关系(共1小题)
12.(2021•泰州)二次函数y=﹣x2+(a﹣1)x+a(a为常数)图象的顶点在y轴右侧.
(1)写出该二次函数图象的顶点横坐标(用含a的代数式表示);
(2)该二次函数表达式可变形为y=﹣(x﹣p)(x﹣a)的形式,求p的值;
(3)若点A(m,n)在该二次函数图象上,且n>0,过点(m+3,0)作y轴的平行线,与二次函数图象的交点在x轴下方,求a的范围.
【解析】解:(1)根据顶点坐标公式可得,
顶点的横坐标为:=,
∴该二次函数图象的顶点横坐标为;
(2)∵y=﹣x2+(a﹣1)x+a=﹣[x2﹣(a﹣1)x﹣a]=﹣(x+1)(x﹣a),
∴p=﹣1,
(3)∵二次函数图象顶点在y轴右侧,
∴,
∴a>1,
设二次函数图象与x轴交点分别为C,D,C在D左侧,
令y=0,则﹣(x+1)(x﹣a)=0,
∴x=﹣1或a,
∴C(﹣1,0),D(a,0),
∴CD=a+1,
∵点A(m,n)在该二次函数图象上,且n>0,
∴A在CD上方,
∵过点(m+3,0)作y轴的平行线,与二次函数图象的交点在x轴下方,如图,
∴CD≤3,
∴a+1≤3,
∴a≤2,
∴1<a≤2.
备注:a的范围还可以详述为:
由题意得:a>1,
由n>0得:﹣1<m<a,
则2<m+3<a+3,
∵抛物线和x=m+3的交点在x轴的下方,
故m+3>a,
即当m+3>2时,都有m+3>a成立,
故a≤2,
故1<a≤2.
一十.二次函数图象与几何变换(共1小题)
13.(2021•盐城)已知抛物线y=a(x﹣1)2+h经过点(0,﹣3)和(3,0).
(1)求a、h的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
【解析】解:(1)将点(0,﹣3)和(3,0)分别代入y=a(x﹣1)2+h,得
.
解得.
所以a=1,h=﹣4.
(2)由(1)知,该抛物线解析式为:y=(x﹣1)2﹣4,将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线解析式为:y=(x﹣2)2﹣2或y=x2﹣4x+2.
一十一.二次函数的应用(共3小题)
14.(2021•淮安)某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.
(1)求y与x的函数表达式;
(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?
【解析】解:(1)根据题意,y=300﹣10(x﹣60)
∴y与x的函数表达式为:y=﹣10x+900;
(2)设每个月的销售利润为w,
由(1)知:w=﹣10x2+1400x﹣45000,
∴w=﹣10(x﹣70)2+4000,
∴每件销售价为70元时,获得最大利润;最大利润为4000元.
15.(2021•泰州)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).
(1)求直线AB的函数关系式;
(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?
【解析】解:(1)设直线AB的函数关系式为:y=kx+b,
把A(120,300)和B(240,100)代入y=kx+b得:
,
解得:,
∴直线AB的函数关系式为y=﹣x+500;
(2)设该树上的桃子销售额为a元,由题意,得;
a=wx=(y+2)x=yx+2x=(﹣x+500)x+2x=﹣x2+7x=﹣(x﹣210)2+735,
∵﹣<0,
∴当x=210时,桃子的销售额最大,最大值为735元.
16.(2021•扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 48000 元;当每个公司租出的汽车为 37 辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
【解析】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,
当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;
设每个公司租出的汽车为x辆,
由题意可得:[(50﹣x)×50+3000]x﹣200x=3500x﹣1850,
解得:x=37或x=﹣1(舍),
∴当每个公司租出的汽车为37辆时,两公司的月利润相等;
(2)设两公司的月利润分别为y甲,y乙,月利润差为y,
则y甲=[(50﹣x)×50+3000]x﹣200x,
y乙=3500x﹣1850,
当甲公司的利润大于乙公司时,0<x<37,
y=y甲﹣y乙=[(50﹣x)×50+3000]x﹣200x﹣(3500x﹣1850)
=﹣50x2+1800x+1850,
当x==18时,利润差最大,且为18050元;
当乙公司的利润大于甲公司时,37<x≤50,
y=y乙﹣y甲=3500x﹣1850﹣[(50﹣x)×50+3000]x+200x
=50x2﹣1800x﹣1850,
∵对称轴为直线x==18,50>0,
∴当37<x≤50时,y随x的增大而增大,
∴当x=50时,利润差最大,且为33150元,
综上:两公司月利润差的最大值为33150元;
(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,
则利润差为y=﹣50x2+1800x+1850﹣ax=﹣50x2+(1800﹣a)x+1850,
对称轴为直线x=,
∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,
∴16.5<<17.5,
解得:50<a<150.
一十二.二次函数综合题(共2小题)
17.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
【解析】解:(1)在y=x+2中,令x=x+2,得0=2不成立,
∴函数y=x+2的图象上不存在“等值点”;
在y=x2﹣x中,令x2﹣x=x,
解得:x1=0,x2=2,
∴函数y=x2﹣x的图象上有两个“等值点”(0,0)或(2,2);
(2)在函数y=(x>0)中,令x=,
解得:x=,
∴A(,),
在函数y=﹣x+b中,令x=﹣x+b,
解得:x=b,
∴B(b,b),
∵BC⊥x轴,
∴C(b,0),
∴BC=|b|,
∵△ABC的面积为3,
∴×|b|×|﹣b|=3,
当b<0时,b2﹣2﹣24=0,
解得b=﹣2,
当0≤b<2时,b2﹣2+24=0,
∵Δ=(﹣2)2﹣4×1×24=﹣84<0,
∴方程b2﹣2+24=0没有实数根,
当b≥2时,b2﹣2﹣24=0,
解得:b=4,
综上所述,b的值为﹣2或4;
(3)令x=x2﹣2,
解得:x1=﹣1,x2=2,
∴函数y=x2﹣2的图象上有两个“等值点”(﹣1,﹣1)或(2,2),
①当m<﹣1时,W1,W2两部分组成的图象上必有2个“等值点”(﹣1,﹣1)或(2,2),
W1:y=x2﹣2(x≥m),
W2:y=(x﹣2m)2﹣2(x<m),
令x=(x﹣2m)2﹣2,
整理得:x2﹣(4m+1)x+4m2﹣2=0,
∵W2的图象上不存在“等值点”,
∴Δ<0,
∴(4m+1)2﹣4(4m2﹣2)<0,
∴m<﹣,
②当m=﹣1时,有3个“等值点”(﹣2,﹣2)、(﹣1,﹣1)、(2,2),
③当﹣1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,
④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),
⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,
综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<﹣或﹣1<m<2.
18.(2021•连云港)如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).
(1)求m的值和直线BC对应的函数表达式;
(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;
(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
【解析】解:(1)将B(3,0)代入y=mx2+(m2+3)x﹣(6m+9),化简得,m2+m=0,
则m=0(舍)或m=﹣1,
∴m=﹣1,
∴y=﹣x2+4x﹣3.
∴C(0,﹣3),
设直线BC的函数表达式为y=kx+b,
将B(3,0),C(0,﹣3)代入表达式,可得,
,解得,,
∴直线BC的函数表达式为y=x﹣3.
(2)如图,过点A作AP1∥BC,设直线AP1交y轴于点G,将直线BC向下平移GC个单位,得到直线P2P3.
由(1)得直线BC的表达式为y=x﹣3,A(1,0),
∴直线AG的表达式为y=x﹣1,
联立,解得,或,
∴P1(2,1)或(1,0),
由直线AG的表达式可得G(0,﹣1),
∴GC=2,CH=2,
∴直线P2P3的表达式为:y=x﹣5,
联立,
解得,,或,,
∴P2(,),P3(,);
综上可得,符合题意的点P的坐标为:(2,1),(1,0),(,),(,);
(3)如图,取点Q使∠ACQ=45°,作直线CQ,过点A作AD⊥CQ于点D,过点D作DF⊥x轴于点F,过点C作CE⊥DF于点E,
则△ACD是等腰直角三角形,
∴AD=CD,
∴△CDE≌△DAF(AAS),
∴AF=DE,CE=DF.
设DE=AF=a,则CE=DF=a+1,
由OC=3,则DF=3﹣a,
∴a+1=3﹣a,解得a=1.
∴D(2,﹣2),又C(0,﹣3),
∴直线CD对应的表达式为y=x﹣3,
设Q(n,n﹣3),代人y=﹣x2+4x﹣3,
∴n﹣3=﹣n2+4n﹣3,整理得n2﹣n=0.
又n≠0,则n=.
∴Q(,﹣).
一十三.全等三角形的判定与性质(共2小题)
19.(2021•常州)如图,B、F、C、E是直线l上的四点,AB∥DE,AB=DE,BF=CE.
(1)求证:△ABC≌△DEF;
(2)将△ABC沿直线l翻折得到△A′BC.
①用直尺和圆规在图中作出△A′BC(保留作图痕迹,不要求写作法);
②连接A′D,则直线A′D与l的位置关系是 平行 .
【解析】证明:(1)∵BF=CE,
∴BF+FC=CE+FC,
即BC=EF,
∵AB∥DE,
∴∠ABC=∠DEF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SAS);
(2)①如图所示,△A′BC即为所求:
②直线A′D与l的位置关系是平行,
故答案为:平行.
20.(2021•南京)如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.
(1)求证△AOB≌△DOC;
(2)若AB=2,BC=3,CE=1,求EF的长.
【解析】(1)证明:在△AOB和△DOC中,
,
∴△AOB≌△DOC(AAS);
(2)解:由(1)得:△AOB≌△DOC,
∴AB=DC=2,
∵BC=3,CE=1,
∴BE=BC+CE=4,
∵EF∥CD,
∴△BCD∽△BEF,
∴=,
即=,
解得:EF=.
一十四.直线与圆的位置关系(共2小题)
21.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
【解析】解:(1)如图1﹣1中,连接AP,过点O作OH⊥AB于H,交CD于E.
∵四边形ABCD是正方形,
∴AB=AD=4,∠ABP=90°,
∴AP是直径,
∴AP===5,
∵OH⊥AB,
∴AH=BH,
∵OA=OP,AH=HB,
∴OH=PB=,
∵∠D=∠DAH=∠AHE=90°,
∴四边形AHED是矩形,
∴OE⊥CE,EH=AD=4,
∴OE=EH﹣OH=4﹣=,
∴OE=OP,
∴直线CD与⊙O相切.
(2)如图2中,延长AE交BC的延长线于T,连接PQ.
∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,
∴△ADE≌△TCE(ASA),
∴AD=CT=4,
∴BT=BC+CT=4+4=8,
∵∠ABT=90°,
∴AT===4,
∵AP是直径,
∴∠AQP=90°,
∵PA平分∠EAB,PQ⊥AQ,PB⊥AB,
∴PB=PQ,
设PB=PQ=x,
∵S△ABT=S△ABP+S△APT,
∴×4×8=×4×x+×4×x,
∴x=2﹣2,
∴tan∠EAP=tan∠PAB==.
备注:本题也可以用面积法,连接PQ,PE,设BP=x,
在Rt△PEQ中,
PE2=x2+(2﹣4)2,
在Rt△PEC中,
PE2=(4﹣x)2+22,
则x2+(2﹣4)2=(4﹣x)2+22,
解得x=PB=2﹣2,
∴tan∠EAP=tan∠PAB==.
22.(2021•淮安)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若CD=3,DE=,求⊙O的直径.
【解析】(1)证明:连接DO,如图,
∵直径所对圆周角,
∴∠ADC=90°,
∴∠BDC=90°,E为BC的中点,
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD且OD为半径,
∴DE与⊙O相切;
(2)由(1)得,∠CDB=90°,
∵CE=EB,
∴DE=BC,
∴BC=5,
∴BD===4,
∵∠BCA=∠BDC=90°,∠B=∠B,
∴△BCA∽△BDC,
∴=,
∴=,
∴AC=,
∴⊙O直径的长为.
相关试卷
这是一份江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:14解答题中档题二,共27页。试卷主要包含了如图,已知P是⊙O外一点等内容,欢迎下载使用。
这是一份江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:12解答题基础题二,共32页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份江苏省13市2021年九年级中考数学真题按题型难易度分层分类汇编:11解答题基础题一,共16页。试卷主要包含了0+2﹣1,计算,计算或化简,,其中x=﹣;,0﹣2sin45°+;等内容,欢迎下载使用。