苏科版1.2 一元二次方程的解法教案设计
展开一元二次方程解法
知识点回顾:
定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
解法一 ——直接开方法
适用范围:可解部分一元二次方程
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n
归纳小结:
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解
自主练习:1:用直接开平方法解下列方程:
(1); (2);
(3). (4)
(5); (6); (7);
2. 关于的方程的根 , .
3. 关于的方程的解为
解法二——配方法
适用范围:可解全部一元二次方程
引例::x2+6x-16=0
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9
左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5
解一次方程→x1=2,x2= -8
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
例1.用配方法解下列关于x的方程
(1)x2-8x+1=0 (2)x2-2x-=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
例2.解下列方程
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.
拓展题.用配方法解方程(6x+7)2(3x+4)(x+1)=6
分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法.
解:设6x+7=y
则3x+4=y+,x+1=y-
依题意,得:y2(y+)(y-)=6
去分母,得:y2(y+1)(y-1)=72
y2(y2-1)=72, y4-y2=72
(y2-)2=
y2-=±
y2=9或y2=-8(舍)
∴y=±3
当y=3时,6x+7=3 6x=-4 x=-
当y=-3时,6x+7=-3 6x=-10 x=-
所以,原方程的根为x1=-,x2=-
例3 求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.
解法三——分解因式法
适用范围:可解部分一元二次方程
因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
解下列方程.
(1)2x2+x=0 (2)3x2+6x=0
上面两个方程中都没有常数项;左边都可以因式分解:
2x2+x=x(2x+1),3x2+6x=3x(x+2)
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是:
(1)x=0或2x+1=0,所以x1=0,x2=-.
(2)3x=0或x+2=0,所以x1=0,x2=-2.
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1.解方程
(1)4x2=11x (2)(x-2)2=2x-4
分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,另一边为0的形式
例2.已知9a2-4b2=0,求代数式的值.
分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.
例3.(十字相乘法)我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
上面这种方法,我们把它称为十字相乘法.
一:用因式分解法解下列方程:
(1)y2+7y+6=0; (2)t(2t-1)=3(2t-1);
(3)(2x-1)(x-1)=1. (4)x2+12x=0;
(5)4x2-1=0; (6)x2=7x;
(7)x2-4x-21=0; (8)(x-1)(x+3)=12;
(9)3x2+2x-1=0; (10)10x2-x-3=0;
(11)(x-1)2-4(x-1)-21=0.
课堂检测
1.下面一元二次方程解法中,正确的是( ).
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1= ,x2=
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x 两边同除以x,得x=1
2.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有( ).
A.0个 B.1个 C.2个 D.3个
3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为( ).
A.- B.-1 C. D.1
4.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______.
5.方程(2x-1)2=2x-1的根是________.
6.二次三项式x2+20x+96分解因式的结果为________;如果令x2+20x+96=0,那么它的两个根是_________.
7.方程x(x-)= -x的解为__________.
8.用因式分解法解下列方程.
(1)3y2-6y=0 (2)25y2-16=0
(3)x2-12x-28=0 (4)x2-12x+35=0
9.已知(x+y)(x+y-1)=0,求x+y的值.
课后作业
核心价值题
1.配方法解方程2x2-x-2=0应把它先变形为( ).
A.(x-)2= B.(x-)2=0 C.(x-)2= D.(x-)2=
2.下列方程中,一定有实数解的是( ).
A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x-a)2=a
3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是( ).
A.1 B.2 C.-1 D.-2
4.将二次三项式x2-4x+1配方后得( ).
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11
6.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ).
A.1 B.-1 C.1或9 D.-1或9
7.方程x2+4x-5=0的解是________.
8.方程左边配成一个完全平方式,所得的方程是 .
9.代数式的值为0,则x的值为________.
10.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.
11.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.
12.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.
13.用配方法解方程.
(1)9y2-18y-4=0 (2)x2+3=2x
(3) (4)
(5) (6)
14.如果x2-4x+y2+6y++13=0,求(xy)z的值.
知者加速
15.用配方法证明:
(1)的值恒为正; (2)的值恒小于0.
(3)多项式的值总大于的值.
16.用适当的方法解下列方程
(1)x2-4x-3=0 (2)(3y-2)2=36 (3)x2-4x+4=0
(4) (5)(2x+3)2-25=0.
(6) (7)(x-1)2=2x-2 (8)6x2-x-2=0
(9)(3x+1)2=7 (10)9x2-24x+16=11
(11)4(x+2)2-9(x-3)2=0 (12)(x+5)(x-5)=3
(13)3x2+1=2x (14)(2x+3)2+5(2x+3)-6=0
初中数学华师大版九年级上册4.一元二次方程根的判别式教学设计: 这是一份初中数学华师大版九年级上册4.一元二次方程根的判别式教学设计,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点等内容,欢迎下载使用。
湘教版九年级上册2.1 一元二次方程优秀教案: 这是一份湘教版九年级上册2.1 一元二次方程优秀教案,共6页。教案主要包含了教学内容分析,学情分析,教学目标,教法,教学过程等内容,欢迎下载使用。
初中数学湘教版九年级上册第2章 一元二次方程2.3 一元二次方程根的判别式公开课教案设计: 这是一份初中数学湘教版九年级上册第2章 一元二次方程2.3 一元二次方程根的判别式公开课教案设计,共7页。