终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题(解析版)

    立即下载
    加入资料篮
    2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题(解析版)第1页
    2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题(解析版)第2页
    2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题(解析版)第3页
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题(解析版)

    展开

    这是一份2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题(解析版),共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2021-2022学年广东省揭阳市揭西县高二上学期期末数学试题一、单选题1.已知集合A=       A BC D   【答案】A【分析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合所以.故选:A.2.已知是虚数单位,若复数满足,则       ).A B2 C D4【答案】C【分析】先求出,然后根据复数的模求解即可【详解】故选:C3.若构成空间的一个基底,则下列向量能构成空间的一个基底的是(       A BC D【答案】B【分析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A,因此A不满足题意;对于B:根据题意知道不共面,而显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C,故C不满足题意;对于D:显然有,选项D不满足题意. 故选:B4.等比数列{}中,已知=8+=4,则的值为(       A1 B2 C3 D5【答案】C【分析】由等比数列性质求出公比,将原式化简后计算【详解】设等比数列{}的公比为,则,所以=.=(2=(1所以213.故选:C5ABC的两个顶点坐标A-40),B40),它的周长是18,则顶点C的轨迹方程是(       A  By≠0C D【答案】D【分析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以AB为焦点的椭圆,去掉ABC共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以所以顶点C的轨迹为以AB为焦点的椭圆,去掉ABC共线的情况,即所以顶点C的轨迹方程是 故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.6.算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,珠算一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:珠算控带四时,经纬三才.北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是(       A B C D【答案】B【分析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:172683562718053,其中是质数的有:177153,故所求事件的概率为故选:B7.直线分别与轴,轴交于两点,点在圆上,则面积的取值范围是A B C D【答案】A【详解】分析:先求出AB两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于两点,P在圆圆心为(20),则圆心到直线距离故点P到直线的距离的范围为故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.8.已知是球的球面上两点,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为(       A B C D【答案】C【分析】 平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】 平面时,三棱锥体积最大.,则三棱锥体积,解得故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当 平面时,三棱锥体积最大.二、多选题9.已知数列满足,则下列各数是的项的有(       A B C D【答案】BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列满足数列是周期为3的数列,且前3项为3故选:【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.10.血压(bloodpressureBP)是指血液在血管内流动时作用于单位面积血管壁的侧压力,它是推动血液在血管内流动的动力,血压的最大值、最小值分别称为收缩压和舒张压.未使用抗高血压药的前提下,18岁以上成人收缩压或舒张压,则说明这位成人有高血压,设从未使用抗高血压药的李华今年40岁,从某天早晨6点开始计算(即早晨6点时,),他的血压)与经过的时间)满足关系式,则(       A.函数的最小正周期为6 B.当天早晨7点时李华的血压为C.当天李华有高血压 D.当天李华的收缩压与舒张压之差为【答案】BCD【分析】由正弦型函数的特征分别对四个选项所求内容进行分析计算即可得解.【详解】因为,所以时,,所以当天早晨7点时李华的血压为因为的最大值为,最小值为,所以李华的收缩压为,舒张压为,因此李华有高血压,且他的收缩压与舒张压之差为.故选:BCD.11.已知动点在双曲线上,双曲线的左、右焦点分别为,下列结论正确的是(       A的离心率为B的渐近线方程为C.动点到两条渐近线的距离之积为定值D.当动点在双曲线的左支上时,的最大值为【答案】AC【分析】根据双曲线的方程求出的值,可求得双曲线的离心率和渐近线方程,可判断AB选项的正误;设点的坐标为,利用点到直线的距离公式结合双曲线的方程可判断C选项的正误;利用双曲线的定义和基本不等式可判断D选项的正误.【详解】对于双曲线所以,双曲线的离心率为,渐近线方程为A选项正确,B选项错误;设点的坐标为,则,双曲线的两条渐近线方程分别为,则点到两条渐近线的距离之积为C选项正确;当动点在双曲线的左支上时,当且仅当时,等号成立,所以,的最大值为D选项错误.故选:AC.【点睛】本题考查双曲线的离心率、渐近线方程的求解,同时也考查了双曲线几何性质和定义的应用,考查计算能力,属于中等题.12.如图,矩形ABCD中,E为边AB的中点,将ADE沿直线DE翻转成A1DE.M为线段A1C的中点,则在ADE翻转过程中,下列命题正确的是(       AMB是定值B.点M在圆上运动C.一定存在某个位置,使DEA1CD.一定存在某个位置,使MB平面A1DE【答案】ABD【分析】CD的中点N,先证平面MBN平面A1DE,再得MB平面A1DE;根据余弦定理计算BM为定值;再根据BM为定值,可得点M在圆上运动;若DEA1C根据条件推出DEA1E,与题意矛盾【详解】解:取DC的中点N,连接MNNBMNA1DNBDE因为MNNBNA1DDED所以平面MNB平面A1DE因为MB平面MNB所以MB平面A1DED正确;A1DEMNBMNA1D=定值,NBDE=定值,根据余弦定理得,MB2MN2NB22MN·NB·cosMNB,所以MB是定值,A正确;因为B是定点,所以M在以B为圆心,MB为半径的圆上,B正确;在矩形ABCD中,AB2ADE为边AB的中点,所以DEEC,若DEA1C可得DE平面A1CE,即得DEA1E,DEA1矛盾,不存在某个位置,使DEA1CC不正确.故选: ABD.三、填空题13.若抛物线上一点到其准线的距离为4,则抛物线的标准方程为___________.【答案】【分析】先由抛物线的方程求出准线的方程,然后根据点到准线的距离可求,进而可得抛物线的标准方程.【详解】抛物线的准线方程为,点到其准线的距离为由题意可得,解得,故抛物线的标准方程为.故答案为:.14.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.【答案】【分析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为由于侧面展开图是一个半圆,又圆锥的母线长为cm所以该半圆的半径为cm所以,所以cm.故答案为:.15.基础建设对社会经济效益产生巨大的作用.某市投入亿元进行基础建设,年后产生亿元社会经济效益.若该市投资基础建设4年后产生的社会经济效益是投资额的2倍,则再过______年.该项投资产生的社会经济效益是投资额的8倍.【答案】8【分析】4年后产生的社会经济效益是投资额的2倍,代入已知函数式求得参数,再求得社会经济效益是投资额的8倍时的时间即为所求结论.【详解】由条件得,即.设投资年后,产生的社会经济效益是投资额的8倍,则有,解得,所以再过年,该项投资产生的社会经济效益是投资额的8倍.故答案为:816.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______【答案】9【详解】 由数列的前项和为,则当时, 所以 所以数列的前和为 时, 时, 所以满足的最小的值为. 点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.四、解答题17.已知直线经过两条直线的交点,且与直线垂直.(1)求直线的一般式方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程.【答案】(1)(2)【分析】1)由题意求出两直线的交点,再求出所求直线的斜率,用点斜式写出直线的方程;2)根据题意求出圆的半径,由圆心写出圆的标准方程.【详解】(1)解:由题意知,解得直线的交点为设直线的斜率为与直线垂直,直线的方程为,化为一般形式为(2)解:设圆的半径为,则圆心为到直线的距离为,由垂径定理得解得的标准方程为18.已知的三个内角的对边分别为,且满足.1)求角的大小;2)若,求的长.【答案】1;(2.【分析】1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得2)用表示出,然后平方由数量积的运算求得向量的模(线段长度).【详解】1)因为所以由正弦定理可得因为,所以,故2)由,得所以所以.19.已知数列,若_________________1)求数列的通项公式;2)求数列的前项和从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.,点在斜率是2的直线上.【答案】答案见解析.【分析】1)若选,根据通项公式与前项和的关系求解通项公式即可;若选,根据可得数列为等差数列,利用基本量法求解通项公式即可;若选,根据两点间的斜率公式可得,可得数列为等差数列进而求得通项公式;2)利用裂项相消求和即可【详解】解:(1)若选,由所以当两式相减可得:而在中,令可得:,符合上式,若选,由)可得:数列为等差数列,又因为,所以,即所以若选,由点在斜率是2的直线上得:所以数列为等差数列且2)由(1)知:所以20.如图,四棱锥中,底面为矩形,底面,点是棱的中点.(1)求证:平面,并求直线与平面的距离;(2),求平面与平面所成夹角的余弦值.【答案】(1)证明见解析,直线与平面的距离为(2)【分析】1)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,利用空间向量法可证得平面,以及求得直线与平面的距离;2)利用空间向量法可求得平面与平面所成夹角的余弦值.【详解】(1)解:因为平面,四边形为矩形,以点为坐标原点,所在直线分别为轴建立如下图所示的空间直角坐标系,,则所以,所以,,又因为,因此,平面.所以,平面的一个法向量为平面平面,则平面所以,直线到平面的距离为.(2)解:若,则设平面的法向量为,取,可得设平面的法向量为,取,可得.因此,平面与平面所成夹角的余弦值为.21.习近平总书记指出:我们既要绿水青山,也要金山银山.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司年初购入一批新能源汽车充电桩,每台16200元,第一年每台设备的维修保养费用为1100元,以后每年增加400元,每台充电桩每年可给公司收益8100元.1)每台充电桩第几年开始获利?2)每台充电桩在第几年时,年平均利润最大.【答案】1)公司从第3年开始获利;(2)第9年时每台充电桩年平均利润最大3600【分析】1)判断已知条件是等差数列,然后求解利润的表达式,推出表达式求解n即可.2)利用基本不等式求解最大值即可.【详解】1)每年的维修保养费用是以1100为首项,400为公差的等差数列,设第n年时累计利润为fn),fn=8100n-[1100+1500+…+400n+700]-16200=8100n-n200n+900-16200=-200n2+7200n-16200=-200n2-36n+81),开始获利即fn)>0∴-200n2-36n+81)>0,即n2-36n+810解得所以公司从第3年开始获利;2)每台充电桩年平均利润为当且仅当,即n=9时,等号成立.即在第9年时每台充电桩年平均利润最大3600元.【点睛】本题考查数列与函数的实际应用,基本不等式的应用,考查转化思想以及计算能力,是中档题.22.已知椭圆的离心率为,点在椭圆C.(1)求椭圆C的标准方程;(2)已知直线与椭圆C交于PQ两点,点M是线段PQ的中点,直线过点M,且与直线l垂直.记直线y轴的交点为N,求的取值范围.【答案】(1)(2)【分析】1)求出后可得椭圆的方程.2)联立直线的方程和椭圆方程,消去后利用韦达定理可用表示,利用换元法和二次函数的性质可求的取值范围.【详解】(1)由题意可得,解得.故椭圆C的标准方程为.(2).联立,整理得,解得从而.因为M是线段PQ的中点,所以,故.直线的方程为,即.,得,则所以.,则.因为,所以,所以. 

    相关试卷

    2023-2024学年广东省揭阳市揭西县高一(上)期末数学试卷(含解析):

    这是一份2023-2024学年广东省揭阳市揭西县高一(上)期末数学试卷(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年广东省揭阳市揭西县高二(上)期末数学试卷(含解析):

    这是一份2023-2024学年广东省揭阳市揭西县高二(上)期末数学试卷(含解析),共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    34,广东省揭阳市普宁市2023-2024学年高二上学期期末数学试题:

    这是一份34,广东省揭阳市普宁市2023-2024学年高二上学期期末数学试题,共18页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map