还剩30页未读,
继续阅读
2022年四川省遂宁市中考数学真题(word版含答案)
展开
这是一份2022年四川省遂宁市中考数学真题(word版含答案),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年四川省遂宁市中考数学试卷
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
2.(4分)下面图形中既是轴对称图形又是中心对称图形的是( )
A.科克曲线 B.笛卡尔心形线
C.阿基米德螺旋线 D.赵爽弦图
3.(4分)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为( )
A.198×103 B.1.98×104 C.1.98×105 D.1.98×106
4.(4分)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是( )
A.大 B.美 C.遂 D.宁
5.(4分)下列计算中正确的是( )
A.a3•a3=a9 B.(﹣2a)3=﹣8a3
C.a10÷(﹣a2)3=a4 D.(﹣a+2)(﹣a﹣2)=a2+4
6.(4分)若关于x的方程=无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
7.(4分)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是( )
A.cm2 B.cm2 C.175πcm2 D.350πcm2
8.(4分)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )
A.6 B.8 C.10 D.12
9.(4分)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为( )
A.﹣2022 B.0 C.2022 D.4044
10.(4分)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③ B.①②③ C.②③ D.①②④
二、填空题(本大题共5个小题,每小题4分,共20分。)
11.(4分)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是 .
12.(4分)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+= .
13.(4分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为 .
14.(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 .
15.(4分)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是 .
三、解答题(本大题共10个小题,共90分。解答应写出必要的文字说明、证明过程或演算步骤)
16.(7分)计算:tan30°+|1﹣|+(π﹣)0﹣()﹣1+.
17.(7分)先化简,再求值:(1﹣)2÷,其中a=4.
18.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.
(1)求证:△AOE≌△DFE;
(2)判定四边形AODF的形状并说明理由.
19.(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元;
(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?
20.(9分)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如图统计图(部分信息未给出).
请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有 人;
(2)补全条形统计图;
(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.
21.(9分)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.
(1)求双曲线y=上的“黎点”;
(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.
22.(9分)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
23.(10分)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.
(1)求出一次函数的解析式并在图中画出它的图象;
(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;
(3)若点B与点D关于原点成中心对称,求出△ACD的面积.
24.(10分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
25.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
2022年四川省遂宁市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
【解答】解:∵﹣2×()=1,
∴﹣2的倒数是﹣.
故选:D.
【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.
2.(4分)下面图形中既是轴对称图形又是中心对称图形的是( )
A.科克曲线 B.笛卡尔心形线
C.阿基米德螺旋线 D.赵爽弦图
【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【解答】解:A.科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;
B.笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;
C.阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
D.赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:A.
【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.(4分)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为( )
A.198×103 B.1.98×104 C.1.98×105 D.1.98×106
【分析】把较大的数表示成科学记数法形式:a×10n,其中1≤a<10,n为正整数即可得出答案.
【解答】解:198000=1.98×105,
故选:C.
【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数小1是解题的关键.
4.(4分)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是( )
A.大 B.美 C.遂 D.宁
【分析】根据图形,可以写出相对的字,本题得以解决.
【解答】解:由图可知,
我和美相对,爱和宁相对,大和遂相对,
故选:B.
【点评】本题考查正方体相对的两个面上的文字,解答本题的关键是明确题意,利用数形结合的思想解答.
5.(4分)下列计算中正确的是( )
A.a3•a3=a9 B.(﹣2a)3=﹣8a3
C.a10÷(﹣a2)3=a4 D.(﹣a+2)(﹣a﹣2)=a2+4
【分析】根据同底数幂的乘法判断A选项;根据积的乘方判断B选项;根据幂的乘方和同底数幂的除法判断C选项;根据平方差公式判断D选项.
【解答】解:A,原式=a6,故该选项不符合题意;
B,原式=﹣8a3,故该选项符合题意;
C,原式=a10÷(﹣a6)=﹣a4,故该选项不符合题意;
D,原式=(﹣a)2﹣22=a2﹣4,故该选项不符合题意;
故选:B.
【点评】本题考查了平方差公式,幂的乘方与积的乘方,同底数幂的乘除法,掌握(ab)n=anbn是解题的关键.
6.(4分)若关于x的方程=无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
【分析】解分式方程可得(4﹣m)x=﹣2,根据题意可知,4﹣m=0或x=﹣=﹣,求出m的值即可.
【解答】解:=,
2(2x+1)=mx,
4x+2=mx,
(4﹣m)x=﹣2,
∵方程无解,
∴4﹣m=0或x=﹣=﹣,
∴m=4或m=0,
故选:D.
【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,分式方程无解的条件是解题的关键.
7.(4分)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是( )
A.cm2 B.cm2 C.175πcm2 D.350πcm2
【分析】先利用勾股定理计算出AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式可计算出圆锥的侧面积.
【解答】解:在Rt△AOC中,AC==25(cm),
所以圆锥的侧面展开图的面积=×2π×7×25=175π(cm2).
故选:C.
【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
8.(4分)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )
A.6 B.8 C.10 D.12
【分析】过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设AN=a,根据DE∥BC,证出△ADE∽△ABC,根据相似三角形对应高的比等于相似比得到DE=a,列出△DEF面积S的函数表达式,根据配方法求最值即可.
【解答】解:如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,
设AN=a,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴=,
∴=,
∴DE=a,
∴△DEF面积S=×DE×MN
=×a•(6﹣a)
=﹣a2+4a
=﹣(a﹣3)2+6,
∴当a=3时,S有最大值,最大值为6.
故选:A.
【点评】本题考查了三角形的面积,平行线的性质,列出△DEF面积S的函数表达式,根据配方法求最值是解题的关键.
9.(4分)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为( )
A.﹣2022 B.0 C.2022 D.4044
【分析】将方程的根代入方程,化简得m2+3m=2022,将代数式变形,整体代入求值即可.
【解答】解:∵m为方程x2+3x﹣2022=0的根,
∴m2+3m﹣2022=0,
∴m2+3m=2022,
∴原式=m3+3m2﹣m2﹣3m﹣2022m+2022
=m(m2+3m)﹣(m2+3m)﹣2022m+2022
=2022m﹣2022﹣2022m+2022
=0.
故选:B.
【点评】本题考查了一元二次方程的解,考查整体思想,将m2+3m=2022整体代入代数式求值是解题的关键.
10.(4分)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③ B.①②③ C.②③ D.①②④
【分析】由四边形ABCD、四边形BEFG是正方形,可得△ABG≌△CBE(SAS),即得∠BAG=∠BCE,即课证明∠POC=90°,可判断①正确;取AC的中点K,可得AK=CK=OK=BK,即可得∠BOA=∠BCA,从而△OBP∽△CAP,判断②正确,由∠AOC=∠ADC=90°,可得A、O、C、D四点共圆,而AD=CD,故∠AOD=∠DOC=45°,判断④正确,不能证明OB平分∠CBG,即可得答案.
【解答】解:∵四边形ABCD、四边形BEFG是正方形,
∴AB=BC,BG=BE,∠ABC=90°=∠GBE,
∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,
∴△ABG≌△CBE(SAS),
∴∠BAG=∠BCE,
∵∠BAG+∠APB=90°,
∴∠BCE+∠APB=90°,
∴∠BCE+∠OPC=90°,
∴∠POC=90°,
∴EC⊥AG,故①正确;
取AC的中点K,如图:
在Rt△AOC中,K为斜边AC上的中点,
∴AK=CK=OK,
在Rt△ABC中,K为斜边AC上的中点,
∴AK=CK=BK,
∴AK=CK=OK=BK,
∴A、B、O、C四点共圆,
∴∠BOA=∠BCA,
∵∠BPO=∠CPA,
∴△OBP∽△CAP,故②正确,
∵∠AOC=∠ADC=90°,
∴∠AOC+∠ADC=180°,
∴A、O、C、D四点共圆,
∵AD=CD,
∴∠AOD=∠DOC=45°,故④正确,
由已知不能证明OB平分∠CBG,故③错误,
故正确的有:①②④,
故选:D.
【点评】本题考查正方形性质及应用,涉及全等三角形的判定与性质,四点共圆等知识,解题的关键是取AC的中点K,证明AK=CK=OK=BK,从而得到A、B、O、C四点共圆.
二、填空题(本大题共5个小题,每小题4分,共20分。)
11.(4分)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是 23 .
【分析】先将题目中的数据按照从小到大排列,然后即可写出相应的中位数.
【解答】解:将22,24,20,23,25按照从小到大排列是:20,22,23,24,25,
∴这五个数的中位数是23,
故答案为:23.
【点评】本题考查中位数,解答本题的关键是明确中位数的定义,会求一组数据的中位数.
12.(4分)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+= 2 .
【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.
【解答】解:由数轴可得,
﹣1<a<0,1<b<2,
∴a+1>0,b﹣1>0,a﹣b<0,
∴|a+1|﹣+
=a+1﹣(b﹣1)+(b﹣a)
=a+1﹣b+1+b﹣a
=2,
故答案为:2.
【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.
13.(4分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为 4 .
【分析】根据正多边形的性质和直角三角形中,30°角所对的边是斜边的一半可以求得AF的长.
【解答】解:设AF=x,则AB=x,AH=6﹣x,
∵六边形ABCDEF是正六边形,
∴∠BAF=120°,
上衣∠HAF=60°,
∴∠AHF=90°,
∴∠AFH=30°,
∴AF=2AH,
∴x=2(6﹣x),
解得x=4,
∴AB=4,
即正六边形ABCDEF的边长为4,
故答案为:4.
【点评】本题考查正多边形和圆,解答本题的关键是明确题意,利用数形结合的思想解答.
14.(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 127 .
【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.
【解答】解:∵第一代勾股树中正方形有1+2=3(个),
第二代勾股树中正方形有1+2+22=7(个),
第三代勾股树中正方形有1+2+22+23=15(个),
......
∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),
故答案为:127.
【点评】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.
15.(4分)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是 ﹣4<m<0 .
【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=﹣1代入解析式求解.
【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线对称轴在y轴左侧,
∴﹣<0,
∴b>0,
∵抛物线经过(0,﹣2),
∴c=﹣2,
∵抛物线经过(1,0),
∴a+b+c=0,
∴a+b=2,b=2﹣a,
∴y=ax2+(2﹣a)x﹣2,
当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,
∵b=2﹣a>0,
∴0<a<2,
∴﹣4<2a﹣4<0,
故答案为:﹣4<m<0.
【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.
三、解答题(本大题共10个小题,共90分。解答应写出必要的文字说明、证明过程或演算步骤)
16.(7分)计算:tan30°+|1﹣|+(π﹣)0﹣()﹣1+.
【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.
【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+
=+1﹣+1﹣3+4
=3.
【点评】本题考查实数的运算、特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根,熟练掌握运算法则是解答本题的关键.
17.(7分)先化简,再求值:(1﹣)2÷,其中a=4.
【分析】根据分式的运算法则进行化简,然后将a的值代入即可.
【解答】解:原式=
=
=.
当a=4时,
原式=.
【点评】本题考查分式的化简求值,熟练掌握分式的运算法则是解答本题的关键.
18.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.
(1)求证:△AOE≌△DFE;
(2)判定四边形AODF的形状并说明理由.
【分析】(1)利用全等三角形的判定定理即可.
(2)先证明四边形AODF为平行四边形,再结合∠AOD=90°,即可得出结论.
【解答】(1)证明:∵E是AD的中点,
∴AE=DE,
∵DF∥AC,
∴∠OAD=∠ADF,
∵∠AEO=∠DEF,
∴△AOE≌△DFE(ASA).
(2)解:四边形AODF为矩形.
理由:∵△AOE≌△DFE,
∴AO=DF,
∵DF∥AC,
∴四边形AODF为平行四边形,
∵四边形ABCD为菱形,
∴AC⊥BD,
即∠AOD=90°,
∴平行四边形AODF为矩形.
【点评】本题考查菱形的性质、全等三角形的判定与性质、矩形的判定,熟练掌握全等三角形的判定与性质以及矩形的判定是解题的关键.
19.(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元;
(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?
【分析】(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;
(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.
【解答】解:(1)设篮球的单价为a元,足球的单价为b元,
由题意可得:,
解得,
答:篮球的单价为120元,足球的单价为90元;
(2)设采购篮球x个,则采购足球为(50﹣x)个,
∵要求篮球不少于30个,且总费用不超过5500元,
∴,
解得30≤x≤33,
∵x为整数,
∴x的值可为30,31,32,33,
∴共有四种购买方案,
方案一:采购篮球30个,采购足球20个;
方案二:采购篮球31个,采购足球19个;
方案三:采购篮球32个,采购足球18个;
方案四:采购篮球33个,采购足球17个.
【点评】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.
20.(9分)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如图统计图(部分信息未给出).
请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 100 名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有 800 人;
(2)补全条形统计图;
(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.
【分析】(1)由爱好花样滑冰运动的40人,占调查人数的40%,可求出调查人数,用爱好花样滑冰运动的学生占调查人数的40%,可估计2000名学生中,爱好花样滑冰运动的学生人数;
(2)求出爱好单板滑雪、爱好自由式滑雪的学生数,补全条形统计图即可;
(3)列表求出12种等可能的结果,找出恰有一个项目是自由式滑雪记C的结果数,然后根据概率公式计算.
【解答】解:(1)∵调查的学生中,爱好花样滑冰运动的学生有40人,占调查人数的40%,
∴一共调查了40÷40%=100(人),
若该校共有2000名学生,估计爱好花样滑冰运动的学生有2000×40%=800(人),
故答案为:100,800;
(2)∵一共调查了100名学生,爱好单板滑雪的占10%,
∴爱好单板滑雪的学生数为100×10%=10(人),
∴爱好自由式滑雪的学生数为100﹣40﹣20﹣10=30(人),
补全条形统计图如下:
(3)
从这四个运动项目中抽出两项运动的所有机会均等的结果一共有12种,
抽到项目中恰有一个项目是自由式滑雪记C的结果有:(A,C),(B,C),(D,C)(C,A),(C,B),(C,D),一共6种等可能的结果,
∴P(抽到项目中恰有一项为自由式滑雪C)==.
答:抽到项目中恰有一项为自由式滑雪C的概率是.
【点评】本题考查统计与概率问题,解题的关键是用列表法或画树状图法,不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
21.(9分)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.
(1)求双曲线y=上的“黎点”;
(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.
【分析】(1)设双曲线y=上的“黎点”为(m,﹣m),构建方程求解即可;
(2)抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,推出方程ax2﹣7x+c=﹣x有且只有一个解,即ax2﹣6x+c=0,Δ=36﹣4ac=0,可得结论.
【解答】解:(1)设双曲线y=上的“黎点”为(m,﹣m),
则有﹣m=,
∴m=±3,
∴双曲线y=上的“黎点”为(3,﹣3)或(﹣3,3);
(2)∵抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,
∴方程ax2﹣7x+c=﹣x有且只有一个解,
即ax2﹣6x+c=0,Δ=36﹣4ac=0,
∴ac9,
∴a=,
∵a>1,
∴0<c<9.
【点评】本题考查反比例函数图象上的点特征,二次函数的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.
22.(9分)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
【分析】如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,设EF=a,BF=b,构建方程组求解.
【解答】解:如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,
∴FB=PH,FH=PB,
由i=5:12,可以假设BP=5x,AP=12x,
∵PB2+PA2=AB2,
∴(5x)2+(12x)2=26,
∴x=2或﹣2(舍去),
∴PB=FH=10,AP=24,
设EF=a,BF=b,
∵tan∠EBF=,
∴=2,
∴a=2b①,
∵tan∠EAH===,
∴=1.2②,
由①②得a=47,b=23.5,
答:塔顶到地面的高度EF约为47米.
【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数,构建方程组解决问题.
23.(10分)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.
(1)求出一次函数的解析式并在图中画出它的图象;
(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;
(3)若点B与点D关于原点成中心对称,求出△ACD的面积.
【分析】(1)根据B点的横坐标为﹣2且在反比例函数y2=的图象上,可以求得点B的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可;
(2)将两个函数解析式联立方程组,即可求得点C的坐标,然后再观察图象,即可写出当y1<y2时对应自变量x的取值范围;
(3)根据点B与点D关于原点成中心对称,可以写出点D的坐标,然后点A、D、C的坐标,即可计算出△ACD的面积.
【解答】解:(1)∵B点的横坐标为﹣2且在反比例函数y2=的图象上,
∴y2==﹣3,
∴点B的坐标为(﹣2,﹣3),
∵点B(﹣2,﹣3)在一次函数y1=ax﹣1的图象上,
∴﹣3=a×(﹣2)﹣1,
解得a=1,
∴一次函数的解析式为y=x﹣1,
∵y=x﹣1,
∴x=0时,y=﹣1;x=1时,y=0;
∴图象过点(0,﹣1),(1,0),
函数图象如右图所示;
(2),
解得或,
∵一次函数y1=ax﹣1(a为常数)与反比例函数y2=交于B、C两点,B点的横坐标为﹣2,
∴点C的坐标为(3,2),
由图象可得,当y1<y2时对应自变量x的取值范围是x<﹣2或0<x<3;
(3)∵点B(﹣2,﹣3)与点D关于原点成中心对称,
∴点D(2,3),
作DE⊥x轴交AC于点E,
将x=2代入y=x﹣1,得y=1,
∴S△ACD=S△ADE+S△DEC==2,
即△ACD的面积是2.
【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.
24.(10分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
【分析】(1)想办法证明OD⊥PD即可;
(2)根据两个角相等证明△BAD∽△CDP;
(3)证明四边形ODGC是矩形,先根据等角的三角函数可得PG的长,最后根据线段的和可得结论.
【解答】(1)证明:如图1,连接OD.
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴=,
∴∠BOD=∠COD=90°,
∵BC∥PD,
∴∠ODP=∠BOD=90°,
∴OD⊥PD,
∵OD是半径,
∴PD是⊙O的切线.
(2)证明:∵BC∥PD,
∴∠PDC=∠BCD.
∵∠BCD=∠BAD,
∴∠BAD=∠PDC,
∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,
∴∠ABD=∠PCD,
∴△ABD∽△DCP;
(3)解:如图,过点O作OE⊥AD于E,连接OD,
∵BC是⊙O的直径,
∴∠BAC=∠BDC=90°,
∵AB=6,AC=8,
∴BC==10,
∵BD=CD,
∴BD=CD=5,
由(2)知:△ABD∽△DCP,
∴=,即=,
∴CP=,
∴AP=AC+CP=8+=,
∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,
∴△BAD∽△DAP,
∴=,即=,
∴AD2=6×=98,
∴AD=7,
∵OE⊥AD,
∴DE=AD=,
∴OE===,
即点O到AD的距离是.
【点评】本题考查了切线的判定,相似三角形的判定和性质,垂径定理,圆周角定理,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
25.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
【分析】(1)利用待定系数法把问题转化为方程组解决;
(2)如图,设D1为D关于直线AB的对称点,D2为D关于ZX直线BC的对称点,连接D1E,D2F,D1D2.当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长;
(3)求出直线AM的解析式,利用方程组求出点M的坐标,过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.分三种情形:当AM=AN时,当AM=MN时,当AN=MN时,分别构建方程求解.
【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣3).
∴,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图,设D1为D关于直线AB的对称点,D2为D关于ZX直线BC的对称点,连接D1E,D2F,D1D2.
由对称性可知DE=D1E,DF=D2F,△DEF的周长=D1E+EF+D2F,
∴当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长,
令y=0,则x2﹣2x﹣3=0,
解得x=﹣1或3,
∴B(3,0),
∴OB=OC=3,
∴△BOC是等腰直角三角形,
∵BC垂直平分DD2,且D(﹣2,0),
∴D2(1,﹣3),
∵D,D1关于x轴的长,
∴D1(0,2),
∴D1D2===,
∴△DEF的周长的最小值为.
(3)∵M到x轴距离为d,AB=4,连接BM.
∴S△ABM=2d,
又∵S△AMN=2d,
∴S△ABM=S△AMN,
∴B,N到AM的距离相等,
∵B,N在AM的同侧,
∴AM∥BN,
设直线BN的解析式为y=kx+m,
则有,
∴,
∴直线BC的解析式为y=x﹣3,
∴设直线AM的解析式为y=x+n,
∵A(﹣1,0),
∴直线AM的解析式为y=x+1,
由,解得或,
∴M(4,5),
∵点N在射线BC上,
∴设N(t,t﹣3),
过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.
∵A(﹣1,0),M(4,5),N(t,t﹣3),
∴AM=5,AN=,MN=,
∵△AMN是等腰三角形,
当AM=AN时,5=,
解得t=1±,
当AM=MN时,5=,
解得t=6±,
当AN=MN时,=,
解得t=,
∵N在第一象限,
∴t>3,
∴t的值为,1+,6+,
∴点N的坐标为(,)或(1+,﹣2+)或(6+,3+).
【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,轴对称最短问题,等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.
2022年四川省遂宁市中考数学试卷
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
2.(4分)下面图形中既是轴对称图形又是中心对称图形的是( )
A.科克曲线 B.笛卡尔心形线
C.阿基米德螺旋线 D.赵爽弦图
3.(4分)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为( )
A.198×103 B.1.98×104 C.1.98×105 D.1.98×106
4.(4分)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是( )
A.大 B.美 C.遂 D.宁
5.(4分)下列计算中正确的是( )
A.a3•a3=a9 B.(﹣2a)3=﹣8a3
C.a10÷(﹣a2)3=a4 D.(﹣a+2)(﹣a﹣2)=a2+4
6.(4分)若关于x的方程=无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
7.(4分)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是( )
A.cm2 B.cm2 C.175πcm2 D.350πcm2
8.(4分)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )
A.6 B.8 C.10 D.12
9.(4分)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为( )
A.﹣2022 B.0 C.2022 D.4044
10.(4分)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③ B.①②③ C.②③ D.①②④
二、填空题(本大题共5个小题,每小题4分,共20分。)
11.(4分)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是 .
12.(4分)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+= .
13.(4分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为 .
14.(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 .
15.(4分)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是 .
三、解答题(本大题共10个小题,共90分。解答应写出必要的文字说明、证明过程或演算步骤)
16.(7分)计算:tan30°+|1﹣|+(π﹣)0﹣()﹣1+.
17.(7分)先化简,再求值:(1﹣)2÷,其中a=4.
18.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.
(1)求证:△AOE≌△DFE;
(2)判定四边形AODF的形状并说明理由.
19.(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元;
(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?
20.(9分)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如图统计图(部分信息未给出).
请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有 人;
(2)补全条形统计图;
(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.
21.(9分)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.
(1)求双曲线y=上的“黎点”;
(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.
22.(9分)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
23.(10分)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.
(1)求出一次函数的解析式并在图中画出它的图象;
(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;
(3)若点B与点D关于原点成中心对称,求出△ACD的面积.
24.(10分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
25.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
2022年四川省遂宁市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
【解答】解:∵﹣2×()=1,
∴﹣2的倒数是﹣.
故选:D.
【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.
2.(4分)下面图形中既是轴对称图形又是中心对称图形的是( )
A.科克曲线 B.笛卡尔心形线
C.阿基米德螺旋线 D.赵爽弦图
【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【解答】解:A.科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;
B.笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;
C.阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
D.赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:A.
【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.(4分)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为( )
A.198×103 B.1.98×104 C.1.98×105 D.1.98×106
【分析】把较大的数表示成科学记数法形式:a×10n,其中1≤a<10,n为正整数即可得出答案.
【解答】解:198000=1.98×105,
故选:C.
【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数小1是解题的关键.
4.(4分)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是( )
A.大 B.美 C.遂 D.宁
【分析】根据图形,可以写出相对的字,本题得以解决.
【解答】解:由图可知,
我和美相对,爱和宁相对,大和遂相对,
故选:B.
【点评】本题考查正方体相对的两个面上的文字,解答本题的关键是明确题意,利用数形结合的思想解答.
5.(4分)下列计算中正确的是( )
A.a3•a3=a9 B.(﹣2a)3=﹣8a3
C.a10÷(﹣a2)3=a4 D.(﹣a+2)(﹣a﹣2)=a2+4
【分析】根据同底数幂的乘法判断A选项;根据积的乘方判断B选项;根据幂的乘方和同底数幂的除法判断C选项;根据平方差公式判断D选项.
【解答】解:A,原式=a6,故该选项不符合题意;
B,原式=﹣8a3,故该选项符合题意;
C,原式=a10÷(﹣a6)=﹣a4,故该选项不符合题意;
D,原式=(﹣a)2﹣22=a2﹣4,故该选项不符合题意;
故选:B.
【点评】本题考查了平方差公式,幂的乘方与积的乘方,同底数幂的乘除法,掌握(ab)n=anbn是解题的关键.
6.(4分)若关于x的方程=无解,则m的值为( )
A.0 B.4或6 C.6 D.0或4
【分析】解分式方程可得(4﹣m)x=﹣2,根据题意可知,4﹣m=0或x=﹣=﹣,求出m的值即可.
【解答】解:=,
2(2x+1)=mx,
4x+2=mx,
(4﹣m)x=﹣2,
∵方程无解,
∴4﹣m=0或x=﹣=﹣,
∴m=4或m=0,
故选:D.
【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,分式方程无解的条件是解题的关键.
7.(4分)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是( )
A.cm2 B.cm2 C.175πcm2 D.350πcm2
【分析】先利用勾股定理计算出AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式可计算出圆锥的侧面积.
【解答】解:在Rt△AOC中,AC==25(cm),
所以圆锥的侧面展开图的面积=×2π×7×25=175π(cm2).
故选:C.
【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
8.(4分)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为( )
A.6 B.8 C.10 D.12
【分析】过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设AN=a,根据DE∥BC,证出△ADE∽△ABC,根据相似三角形对应高的比等于相似比得到DE=a,列出△DEF面积S的函数表达式,根据配方法求最值即可.
【解答】解:如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,
设AN=a,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴=,
∴=,
∴DE=a,
∴△DEF面积S=×DE×MN
=×a•(6﹣a)
=﹣a2+4a
=﹣(a﹣3)2+6,
∴当a=3时,S有最大值,最大值为6.
故选:A.
【点评】本题考查了三角形的面积,平行线的性质,列出△DEF面积S的函数表达式,根据配方法求最值是解题的关键.
9.(4分)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为( )
A.﹣2022 B.0 C.2022 D.4044
【分析】将方程的根代入方程,化简得m2+3m=2022,将代数式变形,整体代入求值即可.
【解答】解:∵m为方程x2+3x﹣2022=0的根,
∴m2+3m﹣2022=0,
∴m2+3m=2022,
∴原式=m3+3m2﹣m2﹣3m﹣2022m+2022
=m(m2+3m)﹣(m2+3m)﹣2022m+2022
=2022m﹣2022﹣2022m+2022
=0.
故选:B.
【点评】本题考查了一元二次方程的解,考查整体思想,将m2+3m=2022整体代入代数式求值是解题的关键.
10.(4分)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
A.①③ B.①②③ C.②③ D.①②④
【分析】由四边形ABCD、四边形BEFG是正方形,可得△ABG≌△CBE(SAS),即得∠BAG=∠BCE,即课证明∠POC=90°,可判断①正确;取AC的中点K,可得AK=CK=OK=BK,即可得∠BOA=∠BCA,从而△OBP∽△CAP,判断②正确,由∠AOC=∠ADC=90°,可得A、O、C、D四点共圆,而AD=CD,故∠AOD=∠DOC=45°,判断④正确,不能证明OB平分∠CBG,即可得答案.
【解答】解:∵四边形ABCD、四边形BEFG是正方形,
∴AB=BC,BG=BE,∠ABC=90°=∠GBE,
∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,
∴△ABG≌△CBE(SAS),
∴∠BAG=∠BCE,
∵∠BAG+∠APB=90°,
∴∠BCE+∠APB=90°,
∴∠BCE+∠OPC=90°,
∴∠POC=90°,
∴EC⊥AG,故①正确;
取AC的中点K,如图:
在Rt△AOC中,K为斜边AC上的中点,
∴AK=CK=OK,
在Rt△ABC中,K为斜边AC上的中点,
∴AK=CK=BK,
∴AK=CK=OK=BK,
∴A、B、O、C四点共圆,
∴∠BOA=∠BCA,
∵∠BPO=∠CPA,
∴△OBP∽△CAP,故②正确,
∵∠AOC=∠ADC=90°,
∴∠AOC+∠ADC=180°,
∴A、O、C、D四点共圆,
∵AD=CD,
∴∠AOD=∠DOC=45°,故④正确,
由已知不能证明OB平分∠CBG,故③错误,
故正确的有:①②④,
故选:D.
【点评】本题考查正方形性质及应用,涉及全等三角形的判定与性质,四点共圆等知识,解题的关键是取AC的中点K,证明AK=CK=OK=BK,从而得到A、B、O、C四点共圆.
二、填空题(本大题共5个小题,每小题4分,共20分。)
11.(4分)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是 23 .
【分析】先将题目中的数据按照从小到大排列,然后即可写出相应的中位数.
【解答】解:将22,24,20,23,25按照从小到大排列是:20,22,23,24,25,
∴这五个数的中位数是23,
故答案为:23.
【点评】本题考查中位数,解答本题的关键是明确中位数的定义,会求一组数据的中位数.
12.(4分)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+= 2 .
【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.
【解答】解:由数轴可得,
﹣1<a<0,1<b<2,
∴a+1>0,b﹣1>0,a﹣b<0,
∴|a+1|﹣+
=a+1﹣(b﹣1)+(b﹣a)
=a+1﹣b+1+b﹣a
=2,
故答案为:2.
【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.
13.(4分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为 4 .
【分析】根据正多边形的性质和直角三角形中,30°角所对的边是斜边的一半可以求得AF的长.
【解答】解:设AF=x,则AB=x,AH=6﹣x,
∵六边形ABCDEF是正六边形,
∴∠BAF=120°,
上衣∠HAF=60°,
∴∠AHF=90°,
∴∠AFH=30°,
∴AF=2AH,
∴x=2(6﹣x),
解得x=4,
∴AB=4,
即正六边形ABCDEF的边长为4,
故答案为:4.
【点评】本题考查正多边形和圆,解答本题的关键是明确题意,利用数形结合的思想解答.
14.(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 127 .
【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.
【解答】解:∵第一代勾股树中正方形有1+2=3(个),
第二代勾股树中正方形有1+2+22=7(个),
第三代勾股树中正方形有1+2+22+23=15(个),
......
∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),
故答案为:127.
【点评】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.
15.(4分)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是 ﹣4<m<0 .
【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=﹣1代入解析式求解.
【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线对称轴在y轴左侧,
∴﹣<0,
∴b>0,
∵抛物线经过(0,﹣2),
∴c=﹣2,
∵抛物线经过(1,0),
∴a+b+c=0,
∴a+b=2,b=2﹣a,
∴y=ax2+(2﹣a)x﹣2,
当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,
∵b=2﹣a>0,
∴0<a<2,
∴﹣4<2a﹣4<0,
故答案为:﹣4<m<0.
【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.
三、解答题(本大题共10个小题,共90分。解答应写出必要的文字说明、证明过程或演算步骤)
16.(7分)计算:tan30°+|1﹣|+(π﹣)0﹣()﹣1+.
【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.
【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+
=+1﹣+1﹣3+4
=3.
【点评】本题考查实数的运算、特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根,熟练掌握运算法则是解答本题的关键.
17.(7分)先化简,再求值:(1﹣)2÷,其中a=4.
【分析】根据分式的运算法则进行化简,然后将a的值代入即可.
【解答】解:原式=
=
=.
当a=4时,
原式=.
【点评】本题考查分式的化简求值,熟练掌握分式的运算法则是解答本题的关键.
18.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.
(1)求证:△AOE≌△DFE;
(2)判定四边形AODF的形状并说明理由.
【分析】(1)利用全等三角形的判定定理即可.
(2)先证明四边形AODF为平行四边形,再结合∠AOD=90°,即可得出结论.
【解答】(1)证明:∵E是AD的中点,
∴AE=DE,
∵DF∥AC,
∴∠OAD=∠ADF,
∵∠AEO=∠DEF,
∴△AOE≌△DFE(ASA).
(2)解:四边形AODF为矩形.
理由:∵△AOE≌△DFE,
∴AO=DF,
∵DF∥AC,
∴四边形AODF为平行四边形,
∵四边形ABCD为菱形,
∴AC⊥BD,
即∠AOD=90°,
∴平行四边形AODF为矩形.
【点评】本题考查菱形的性质、全等三角形的判定与性质、矩形的判定,熟练掌握全等三角形的判定与性质以及矩形的判定是解题的关键.
19.(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元;
(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?
【分析】(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;
(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.
【解答】解:(1)设篮球的单价为a元,足球的单价为b元,
由题意可得:,
解得,
答:篮球的单价为120元,足球的单价为90元;
(2)设采购篮球x个,则采购足球为(50﹣x)个,
∵要求篮球不少于30个,且总费用不超过5500元,
∴,
解得30≤x≤33,
∵x为整数,
∴x的值可为30,31,32,33,
∴共有四种购买方案,
方案一:采购篮球30个,采购足球20个;
方案二:采购篮球31个,采购足球19个;
方案三:采购篮球32个,采购足球18个;
方案四:采购篮球33个,采购足球17个.
【点评】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.
20.(9分)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如图统计图(部分信息未给出).
请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 100 名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有 800 人;
(2)补全条形统计图;
(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.
【分析】(1)由爱好花样滑冰运动的40人,占调查人数的40%,可求出调查人数,用爱好花样滑冰运动的学生占调查人数的40%,可估计2000名学生中,爱好花样滑冰运动的学生人数;
(2)求出爱好单板滑雪、爱好自由式滑雪的学生数,补全条形统计图即可;
(3)列表求出12种等可能的结果,找出恰有一个项目是自由式滑雪记C的结果数,然后根据概率公式计算.
【解答】解:(1)∵调查的学生中,爱好花样滑冰运动的学生有40人,占调查人数的40%,
∴一共调查了40÷40%=100(人),
若该校共有2000名学生,估计爱好花样滑冰运动的学生有2000×40%=800(人),
故答案为:100,800;
(2)∵一共调查了100名学生,爱好单板滑雪的占10%,
∴爱好单板滑雪的学生数为100×10%=10(人),
∴爱好自由式滑雪的学生数为100﹣40﹣20﹣10=30(人),
补全条形统计图如下:
(3)
从这四个运动项目中抽出两项运动的所有机会均等的结果一共有12种,
抽到项目中恰有一个项目是自由式滑雪记C的结果有:(A,C),(B,C),(D,C)(C,A),(C,B),(C,D),一共6种等可能的结果,
∴P(抽到项目中恰有一项为自由式滑雪C)==.
答:抽到项目中恰有一项为自由式滑雪C的概率是.
【点评】本题考查统计与概率问题,解题的关键是用列表法或画树状图法,不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
21.(9分)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.
(1)求双曲线y=上的“黎点”;
(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.
【分析】(1)设双曲线y=上的“黎点”为(m,﹣m),构建方程求解即可;
(2)抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,推出方程ax2﹣7x+c=﹣x有且只有一个解,即ax2﹣6x+c=0,Δ=36﹣4ac=0,可得结论.
【解答】解:(1)设双曲线y=上的“黎点”为(m,﹣m),
则有﹣m=,
∴m=±3,
∴双曲线y=上的“黎点”为(3,﹣3)或(﹣3,3);
(2)∵抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,
∴方程ax2﹣7x+c=﹣x有且只有一个解,
即ax2﹣6x+c=0,Δ=36﹣4ac=0,
∴ac9,
∴a=,
∵a>1,
∴0<c<9.
【点评】本题考查反比例函数图象上的点特征,二次函数的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.
22.(9分)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
【分析】如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,设EF=a,BF=b,构建方程组求解.
【解答】解:如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,
∴FB=PH,FH=PB,
由i=5:12,可以假设BP=5x,AP=12x,
∵PB2+PA2=AB2,
∴(5x)2+(12x)2=26,
∴x=2或﹣2(舍去),
∴PB=FH=10,AP=24,
设EF=a,BF=b,
∵tan∠EBF=,
∴=2,
∴a=2b①,
∵tan∠EAH===,
∴=1.2②,
由①②得a=47,b=23.5,
答:塔顶到地面的高度EF约为47米.
【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数,构建方程组解决问题.
23.(10分)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.
(1)求出一次函数的解析式并在图中画出它的图象;
(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;
(3)若点B与点D关于原点成中心对称,求出△ACD的面积.
【分析】(1)根据B点的横坐标为﹣2且在反比例函数y2=的图象上,可以求得点B的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可;
(2)将两个函数解析式联立方程组,即可求得点C的坐标,然后再观察图象,即可写出当y1<y2时对应自变量x的取值范围;
(3)根据点B与点D关于原点成中心对称,可以写出点D的坐标,然后点A、D、C的坐标,即可计算出△ACD的面积.
【解答】解:(1)∵B点的横坐标为﹣2且在反比例函数y2=的图象上,
∴y2==﹣3,
∴点B的坐标为(﹣2,﹣3),
∵点B(﹣2,﹣3)在一次函数y1=ax﹣1的图象上,
∴﹣3=a×(﹣2)﹣1,
解得a=1,
∴一次函数的解析式为y=x﹣1,
∵y=x﹣1,
∴x=0时,y=﹣1;x=1时,y=0;
∴图象过点(0,﹣1),(1,0),
函数图象如右图所示;
(2),
解得或,
∵一次函数y1=ax﹣1(a为常数)与反比例函数y2=交于B、C两点,B点的横坐标为﹣2,
∴点C的坐标为(3,2),
由图象可得,当y1<y2时对应自变量x的取值范围是x<﹣2或0<x<3;
(3)∵点B(﹣2,﹣3)与点D关于原点成中心对称,
∴点D(2,3),
作DE⊥x轴交AC于点E,
将x=2代入y=x﹣1,得y=1,
∴S△ACD=S△ADE+S△DEC==2,
即△ACD的面积是2.
【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.
24.(10分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)若AB=6,AC=8,求点O到AD的距离.
【分析】(1)想办法证明OD⊥PD即可;
(2)根据两个角相等证明△BAD∽△CDP;
(3)证明四边形ODGC是矩形,先根据等角的三角函数可得PG的长,最后根据线段的和可得结论.
【解答】(1)证明:如图1,连接OD.
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴=,
∴∠BOD=∠COD=90°,
∵BC∥PD,
∴∠ODP=∠BOD=90°,
∴OD⊥PD,
∵OD是半径,
∴PD是⊙O的切线.
(2)证明:∵BC∥PD,
∴∠PDC=∠BCD.
∵∠BCD=∠BAD,
∴∠BAD=∠PDC,
∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,
∴∠ABD=∠PCD,
∴△ABD∽△DCP;
(3)解:如图,过点O作OE⊥AD于E,连接OD,
∵BC是⊙O的直径,
∴∠BAC=∠BDC=90°,
∵AB=6,AC=8,
∴BC==10,
∵BD=CD,
∴BD=CD=5,
由(2)知:△ABD∽△DCP,
∴=,即=,
∴CP=,
∴AP=AC+CP=8+=,
∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,
∴△BAD∽△DAP,
∴=,即=,
∴AD2=6×=98,
∴AD=7,
∵OE⊥AD,
∴DE=AD=,
∴OE===,
即点O到AD的距离是.
【点评】本题考查了切线的判定,相似三角形的判定和性质,垂径定理,圆周角定理,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
25.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;
(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.
【分析】(1)利用待定系数法把问题转化为方程组解决;
(2)如图,设D1为D关于直线AB的对称点,D2为D关于ZX直线BC的对称点,连接D1E,D2F,D1D2.当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长;
(3)求出直线AM的解析式,利用方程组求出点M的坐标,过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.分三种情形:当AM=AN时,当AM=MN时,当AN=MN时,分别构建方程求解.
【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣3).
∴,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图,设D1为D关于直线AB的对称点,D2为D关于ZX直线BC的对称点,连接D1E,D2F,D1D2.
由对称性可知DE=D1E,DF=D2F,△DEF的周长=D1E+EF+D2F,
∴当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长,
令y=0,则x2﹣2x﹣3=0,
解得x=﹣1或3,
∴B(3,0),
∴OB=OC=3,
∴△BOC是等腰直角三角形,
∵BC垂直平分DD2,且D(﹣2,0),
∴D2(1,﹣3),
∵D,D1关于x轴的长,
∴D1(0,2),
∴D1D2===,
∴△DEF的周长的最小值为.
(3)∵M到x轴距离为d,AB=4,连接BM.
∴S△ABM=2d,
又∵S△AMN=2d,
∴S△ABM=S△AMN,
∴B,N到AM的距离相等,
∵B,N在AM的同侧,
∴AM∥BN,
设直线BN的解析式为y=kx+m,
则有,
∴,
∴直线BC的解析式为y=x﹣3,
∴设直线AM的解析式为y=x+n,
∵A(﹣1,0),
∴直线AM的解析式为y=x+1,
由,解得或,
∴M(4,5),
∵点N在射线BC上,
∴设N(t,t﹣3),
过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.
∵A(﹣1,0),M(4,5),N(t,t﹣3),
∴AM=5,AN=,MN=,
∵△AMN是等腰三角形,
当AM=AN时,5=,
解得t=1±,
当AM=MN时,5=,
解得t=6±,
当AN=MN时,=,
解得t=,
∵N在第一象限,
∴t>3,
∴t的值为,1+,6+,
∴点N的坐标为(,)或(1+,﹣2+)或(6+,3+).
【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,轴对称最短问题,等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.
相关试卷
2023年四川省遂宁市中考数学真题(解析版): 这是一份2023年四川省遂宁市中考数学真题(解析版),共32页。
2023年四川省遂宁市中考数学真题(解析版): 这是一份2023年四川省遂宁市中考数学真题(解析版),共32页。
2023年四川省遂宁市中考数学真题(解析版): 这是一份2023年四川省遂宁市中考数学真题(解析版),共32页。