2022年四川省泸州市中考数学试卷解析版
展开2022年四川省泸州市中考数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)﹣=( )
A.﹣2 B. C. D.2
2.(3分)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为( )
A.7.55×106 B.75.5×106 C.7.55×107 D.75.5×107
3.(3分)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是( )
A. B.
C. D.
4.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是( )
A.30° B.40° C.50° D.70°
5.(3分)下列运算正确的是( )
A.a2•a3=a6 B.3a﹣2a=1
C.(﹣2a2)3=﹣8a6 D.a6÷a2=a3
6.(3分)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是( )
A.35,35 B.34,33 C.34,35 D.35,34
7.(3分)与2+最接近的整数是( )
A.4 B.5 C.6 D.7
8.(3分)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是( )
A.y=﹣x2+x B.y=﹣x2﹣4
C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+1
9.(3分)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为( )
A.﹣3 B.﹣1 C.﹣3或1 D.﹣1或3
10.(3分)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是( )
A.1 B. C.2 D.4
11.(3分)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )
A.y=3x B.y=﹣x+ C.y=﹣2x+11 D.y=﹣2x+12
12.(3分)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为( )
A. B. C. D.1
二、填空题(本大题共4个小题,每小题3分,共12分).
13.(3分)点(﹣2,3)关于原点的对称点的坐标为 .
14.(3分)若(a﹣2)2+|b+3|=0,则ab= .
15.(3分)若方程+1=的解使关于x的不等式(2﹣a)x﹣3>0成立,则实数a的取值范围是 .
16.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A到⊙O上的点的距离的最大值为 .
三、本大题共3个小题,每小题6分,共18分.
17.(6分)计算:()0+2﹣1+cos45°﹣|﹣|.
18.(6分)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.
19.(6分)化简:(+1)÷.
四、本大题共2个小题,每小题7分,共14分.
20.(7分)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:
劳动时间t(单位:小时)
频数
0.5≤t<1
12
1≤t<1.5
a
1.5≤t<2
28
2≤t<2.5
16
2.5≤t≤3
4
(1)m= ,a= ;
(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?
(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.
21.(7分)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.
(1)A,B两种农产品每件的价格分别是多少元?
(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?
五、本大题共2个小题,每小题8分,共16分.
22.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.
(1)求b的值;
(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.
23.(8分)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).
六、本大题共2个小题,每小题12分,共24分.
24.(12分)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.
(1)求证:FD∥AB;
(2)若AC=2,BC=,求FD的长.
25.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
(1)求a,c的值;
(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
2022年四川省泸州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.【分析】根据算术平方根的定义判断即可.
【解答】解:.
故选:A.
2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【解答】解:75500000=7.55×107,
故选:C.
3.【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.
【解答】解:从物体上面看,底层有一个正方形,上层有四个正方形.
故选:C.
4.【分析】首先利用平行线的性质得到∠1=∠DAC,然后利用AB⊥AC得到∠BAC=90°,最后利用角的和差关系求解.
【解答】解:如图所示,
∵直线a∥b,
∴∠1=∠DAC,
∵∠1=130°,
∴∠DAC=130°,
又∵AB⊥AC,
∴∠BAC=90°,
∴∠2=∠DAC﹣∠BAC=130°﹣90°=40°.
故选:B.
5.【分析】选项A根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项B根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减.
【解答】解:A.a2•a3=a5,故本选项不合题意;
B.3a﹣2a=a,故本选项不合题意;
C.(﹣2a2)3=﹣8a6,故本选项符合题意;
D.a6÷a2=a4,故本选项不合题意;
故选:C.
6.【分析】根据中位数和众数的定义求解可得.
【解答】解:∵35出现的次数最多,
∴这组数据的众数是35,
把这些数从小到大排列,排在中间的两个数分别为33、35,故中位数为,
故选:D.
7.【分析】估算无理数的大小,再确定更接近的整数,进而得出答案.
【解答】解:∵3<<4,而15﹣9>16﹣15,
∴更接近4,
∴2+更接近6,
故选:C.
8.【分析】根据抛物线的平移规律,可得答案.
【解答】解:∵将抛物线y=﹣x2+x+1经过平移后开口方向不变,开口大小也不变,
∴抛物线y=﹣x2+x+1经过平移后不可能得到的抛物线是y=﹣x2+x+1.
故选:D.
9.【分析】根据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值.
【解答】解:∵方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,
∴x1+x2=2m﹣1,x1x2=m2,
∵(x1+1)(x2+1)=x1x2+x1+x2+1=3,
∴m2+2m﹣1+1=3,
解得:m1=1,m2=﹣3,
∵方程有两实数根,
∴Δ=(2m﹣1)2﹣4m2≥0,
即m≤,
∴m2=1(不合题意,舍去),
∴m=﹣3;
故选:A.
10.【分析】由垂径定理可知,点D是AC的中点,则OD是△ABC的中位线,所以OD=BC,设OD=x,则BC=2x,则OE=4﹣x,AB=2OE=8﹣2x,在Rt△ABC中,由勾股定理可得AB2=AC2+BC2,即(8﹣2x)2=(4)2+(2x)2,求出x的值即可得出结论.
【解答】解:∵AB是⊙O的直径,
∴∠C=90°,
∵OD⊥AC,
∴点D是AC的中点,
∴OD是△ABC的中位线,
∴OD∥BC,且OD=BC,
设OD=x,则BC=2x,
∵DE=4,
∴OE=4﹣x,
∴AB=2OE=8﹣2x,
在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,
∴(8﹣2x)2=(4)2+(2x)2,
解得x=1.
∴BC=2x=2.
故选:C.
11.【分析】分别求出矩形OABC和菱形ABEF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.
【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,
则直线MN为符合条件的直线l,如图,
∵四边形OABC是矩形,
∴OM=BM.
∵B的坐标为(10,4),
∴M(5,2),AB=10,BC=4.
∵四边形ABEF为菱形,
BE=AB=10.
过点E作EG⊥AB于点G,
在Rt△BEG中,
∵tan∠ABE=,
∴,
设EG=4k,则BG=3k,
∴BE==5k,
∴5k=10,
∴k=2,
∴EG=8,BG=6,
∴AG=4.
∴E(4,12).
∵B的坐标为(10,4),AB∥x轴,
∴A(0,4).
∵点N为AE的中点,
∴N(2,8).
设直线l的解析式为y=ax+b,
∴,
解得:,
∴直线l的解析式为y=﹣2x+12,
故选:D.
12.【分析】根据正方形的性质、相似三角形的判定和性质,可以求得CN和BN的长,然后根据BC=3,即可求得MN的长.
【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,
∵BF平分∠CBG,∠KBH=90°,
∴正方形BHFK是正方形,
∵DE⊥EF,∠EHF=90°,
∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,
∴∠DEA=∠EFH,
∵∠A=∠EHF=90°,
∴△DAE∽△EHF,
∴,
∵正方形ABCD的边长为3,BE=2AE,
∴AE=1,BE=2,
设FH=a,则BH=a,
∴,
解得a=1;
∵FM⊥CB,DC⊥CB,
∴△DCN∽△FKN,
∴,
∵BC=3,BK=1,
∴CK=2,
设CN=b,则NK=2﹣b,
∴,
解得b=,
即CN=,
∵∠A=∠EBM,∠AED=∠BME,
∴△ADE∽△BEM,
∴,
∴,
解得BM=,
∴MN=BC﹣CN﹣BM=3﹣﹣=,
故选:B.
二、填空题(本大题共4个小题,每小题3分,共12分).
13.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.
【解答】解:∵点M(﹣2,3)关于原点对称,
∴点M(﹣2,3)关于原点对称的点的坐标为(2,﹣3).
故答案为(2,﹣3).
14.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【解答】解:由题意得,a﹣2=0,b+3=0,
解得a=2,b=﹣3,
所以,ab=2×(﹣3)=﹣6.
故答案为:﹣6.
15.【分析】先解分式方程,再将x代入不等式中即可求解.
【解答】解:+1=,
+=,
=0,
解得:x=1,
∵x﹣2≠0,2﹣x≠0,
∴x=1是分式方程的解,
将x=1代入不等式(2﹣a)x﹣3>0,得:
2﹣a﹣3>0,
解得:a<﹣1,
∴实数a的取值范围是a<﹣1,
故答案为:a<﹣1.
16.【分析】连接OE、OF,根据正切的定义求出∠ABC,根据切线长定理得到∠OBF=30°,根据含30°角的直角三角形的性质、勾股定理计算,得到答案.
【解答】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD为点A到⊙O上的点的距离的最大值,
设⊙O与BC、BA的切点分别为E、F,连接OE、OF,
则OE⊥BC,OF⊥AB,
∵AC=6,BC=2,
∴tan∠ABC==,AB==4,
∴∠ABC=60°,
∴∠OBF=30°,
∴BF==,
∴AF=AB﹣BF=3,
∴OA==2,
∴AD=2+1,
故答案为:2+1.
三、本大题共3个小题,每小题6分,共18分.
17.【分析】根据实数的运算法则,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值直接计算即可.
【解答】解:原式=1++×﹣
=1++1﹣
=1+1
=2.
18.【分析】根据平行四边形的性质,可以得到∠A=∠C,AD=CB,再根据AE=CF,利用SAS可以证明△ADE和△CBF全等,然后即可证明结论成立.
【解答】证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=CB,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS),
∴DE=BF.
19.【分析】先把括号部分通分并计算加法,再根据分式的乘除法法则化简即可.
【解答】解:原式=
=
=
=.
四、本大题共2个小题,每小题7分,共14分.
20.【分析】(1)用A组人数除以它所占的百分比得到m的值,然后m分别减去A、C、D、E组的人数得到a的值;
(2)用640乘以D、E组的人数所占的百分比的和即可;
(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.
【解答】解:(1)m=12÷15%=80,
a=80﹣12﹣28﹣16﹣4=20;
故答案为:80;20;
(2)640×=160(人),
所以估计劳动时间在2≤t≤3范围的学生有160人;
(3)画树状图为:
共有12种等可能的结果,其中一名男生和一名女生的结果数为8,
所以恰好抽到一名男生和一名女生的概率==.
21.【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.
【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,
依题意得:,
解得:.
答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.
(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,
依题意得:,
解得:20≤m≤30.
设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.
∵﹣10<0,
∴w随m的增大而减小,
∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.
答:当购进20件A种农产品,20件B种农产品时获利最多.
五、本大题共2个小题,每小题8分,共16分.
22.【分析】(1)先求出点A坐标,代入解析式可求解;
(2)先求出点D坐标,由面积的和差关系可求CD=2,即可求解.
【解答】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,
∴点A(2,6),
∵直线y=﹣x+b经过点A,
∴6=﹣×2+b,
∴b=9;
(2)如图,设直线AB与x轴的交点为D,
设点C(a,0),
∵直线AB与x轴的交点为D,
∴点D(6,0),
由题意可得:,
∴,,
∴点B(4,3),
∵S△ACB=S△ACD﹣S△BCD,
∴3=×CD×(6﹣3),
∴CD=2,
∴点C(4,0)或(8,0).
23.【分析】由勾股定理求出AB过D作DH⊥AB于H,分别在Rt△ADH中和Rt△BDH中,解直角三角形即可求出BD.
【解答】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.
∴∠C=90°,
∴AB==BC=8=16(nmile),
过D作DH⊥AB于H,
则∠AHD=∠BHD=90°,
在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,
∴AH=AD=5nmile,DH=10•cos30°=10×=5,
∴BH=AB﹣AH=11nmile,
在Rt△BDH中,
BD===14(nmile),
答:B,D间的距离是14nmile.
六、本大题共2个小题,每小题12分,共24分.
24.【分析】(1)连接OD,证明DF⊥OD,AB⊥OD,可得结论;
(2)过点C作CH⊥AB于点H.利用勾股定理求出AB,利用面积法求出CH,证明△CHO∽△ODF,推出=,由此求出DF即可.
【解答】(1)证明:连接OD.
∵DF是⊙O的切线,
∴OD⊥DF,
∵CD平分∠ACB,
∴=,
∴OD⊥AB,
∴AB∥DF;
(2)解:过点C作CH⊥AB于点H.
∵AB是直径,
∴∠ACB=90°,
∵BC=,AC=2,
∴AB===5,
∵S△ABC=•AC•BC=•AB•CH,
∴CH==2,
∴BH==1,
∴OH=OB﹣BH=﹣1=,
∵DF∥AB,
∴∠COH=∠F,
∵∠CHO=∠ODF=90°,
∴△CHO∽△ODF,
∴=,
∴=,
∴DF=.
25.【分析】(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中列方程组解出即可;
(2)利用待定系数可得直线AB的解析式,再设直线DE的解析式为:y=mx,点D是直线DE和AB的交点,列方程可得点D的横坐标,根据△BDO与△OCE的面积相等列等式可解答;
(3)设P(t,﹣t2+t+4),分两种情况:作辅助线构建相似三角形,证明三角形相似或利用等角的三角函数列等式可解答.
【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:
解得:;
(2)由(2)知:抛物线解析式为:y=﹣x2+x+4,
设直线AB的解析式为:y=kx+b,
则,解得:,
∴AB的解析式为:y=2x+4,
设直线DE的解析式为:y=mx,
∴2x+4=mx,
∴x=,
当x=3时,y=3m,
∴E(3,3m),
∵△BDO与△OCE的面积相等,CE⊥OC,
∴•3•(﹣3m)=•4•,
∴9m2﹣18m﹣16=0,
∴(3m+2)(3m﹣8)=0,
∴m1=﹣,m2=(舍),
∴直线DE的解析式为:y=﹣x;
(3)存在,
B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:
设P(t,﹣t2+t+4),
①如图1,过点P作PH⊥y轴于H,
∵四边形BPGF是矩形,
∴BP=FG,∠PBF=∠BFG=90°,
∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,
∴∠PBH=∠OFB=∠CGF,
∵∠PHB=∠FCG=90°,
∴△PHB≌△FCG(AAS),
∴PH=CF,
∴CF=PH=t,OF=3﹣t,
∵∠PBH=∠OFB,
∴=,即=,
解得:t1=0(舍),t2=1,
∴F(2,0);
②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,
同①可得:NG=FM=3,OF=t﹣3,
∵∠OFB=∠FPM,
∴tan∠OFB=tan∠FPM,
∴=,即=,
解得:t1=,t2=(舍),
∴F(,0);
综上,点F的坐标为(2,0)或(,0).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/6/18 1
2022年四川省泸州市中考数学试卷+精细解析: 这是一份2022年四川省泸州市中考数学试卷+精细解析,共29页。试卷主要包含了选择题,填空题.等内容,欢迎下载使用。
2023年四川省泸州市中考数学试卷(含答案解析): 这是一份2023年四川省泸州市中考数学试卷(含答案解析),共20页。试卷主要包含了 下列各数中,最大的是, 下列运算正确的是等内容,欢迎下载使用。
2023年四川省泸州市中考数学试卷(含答案与解析): 这是一份2023年四川省泸州市中考数学试卷(含答案与解析),共22页。试卷主要包含了选择题.,填空题等内容,欢迎下载使用。