终身会员
搜索
    上传资料 赚现金
    2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(教师版).doc
    • 练习
      2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(含详解).doc
    2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)01
    2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)02
    2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)01
    2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)02
    还剩2页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)

    展开
    这是一份2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时34《基本不等式》达标练习含详解doc、2023年高考数学文数一轮复习课时34《基本不等式》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    一、选择题
    在下列各函数中,最小值等于2的函数是( )
    A.y=x+eq \f(1,x) B.y=cs x+eq \f(1,cs x)(0<x<eq \f(π,2))
    C.y=eq \f(x2+3,\r(x2+2)) D.y=ex+eq \f(4,ex)-2
    已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值为( )
    A.3 B.4 C.eq \f(9,2) D.eq \f(11,2)
    若实数a,b满足eq \f(1,a)+eq \f(2,b)=eq \r(ab),则ab的最小值为( )
    A.eq \r(2) B.2 C.2eq \r(2) D.4
    已知a+b=t(a>0,b>0),t为常数,且ab的最大值为2,则t=( )
    A.2 B.4 C.2eq \r(2) D.2eq \r(5)
    设△ABC的内角A,B,C所对的边分别为a,b,c,且C=eq \f(π,6),a+b=12,则△ABC面积的最大值为( )
    A.8 B.9 C.16 D.21
    若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )
    A.a+b≥2eq \r(ab) B.eq \f(1,a)+eq \f(1,b)>eq \f(1, \r(ab)) C.eq \f(b,a)+eq \f(a,b)≥2 D.a2+b2>2ab
    设x>0,y>0,且x+4y=40,则lgx+lgy的最大值是( )
    A.40 B.10 C.4 D.2
    下列不等式一定成立的是( )
    A.lg(x2+eq \f(1,4))>lgx(x>0)
    B.sinx+eq \f(1,sinx)≥2(x≠kπ,k∈Z)
    C.x2+1≥2|x|(x∈R)
    D.eq \f(1,x2+1)>1(x∈R)
    当0<m<eq \f(1,2)时,若eq \f(1,m)+eq \f(2,1-2m)≥k2-2k恒成立,则实数k的取值范围为( )
    A.[-2,0)∪(0,4]
    B.[-4,0)∪(0,2]
    C.[-4,2]
    D.[-2,4]
    若对于任意的x>0,不等式eq \f(x,x2+3x+1)≤a恒成立,则实数a的取值范围为( )
    A.a≥eq \f(1,5) B.a>eq \f(1,5) C.a 设正项等差数列{an}的前n项和为Sn,若S2 017=4 034,则eq \f(1,a9)+eq \f(9,a2 009)的最小值为 .
    设a>0,若关于x的不等式 SKIPIF 1 < 0 ≥5在(1,+∞)上恒成立,则a的最小值为( )
    A.16 B.9 C.4 D.2
    二、填空题
    已知函数y=x+eq \f(m,x-2)(x>2)的最小值为6,则正数m的值为________.
    若直线eq \f(x,a)+eq \f(y,b)=1(a>0,b>0)过点(1,2),则2a+b的最小值为________.
    已知△ABC中,AB=AC,∠BAC=120°,BC=4,若点P是边BC上的动点,且P到AB,AC的距离分别为m,n,则eq \f(4,m)+eq \f(1,n)的最小值为________.
    已知两条直线l1:y=m(m>0)和l2:y=eq \f(8,2m+1),l1与函数y=|lg2x|的图象从左到右相交于点A,B,l2与函数y=|lg2x|的图象从左到右相交于点C,D,记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,eq \f(b,a)的最小值为 .
    \s 0 答案解析
    答案为:D
    解析:当x<0时,y=x+eq \f(1,x)≤-2,故A错误;因为0<x<eq \f(π,2),所以0<cs x<1,
    所以y=cs x+eq \f(1,cs x)>2,故B错误;因为y=eq \f(x2+3,\r(x2+2))=eq \r(x2+2)+eq \f(1,\r(x2+2))≥2,
    当且仅当x2+2=1时取等号,此时x无解,故C错误;
    因为ex>0,所以y=ex+eq \f(4,ex)-2≥2eq \r(ex·\f(4,ex))-2=2,
    当且仅当ex=eq \f(4,ex),即ex=2时等号成立,故选D.
    答案为:B
    解析:因为x+2y+2xy=8.所以y=eq \f(8-x,2x+1)>0,即-1所以x+2y=x+2·eq \f(8-x,2x+1)=x+1+eq \f(9,x+1)-2≥2 eq \r(9)-2=4,
    当且仅当x+1=eq \f(9,x+1),即x=2,y=1时,等号成立.故x+2y的最小值是4.
    答案为:C
    解析:法一:由已知得eq \f(1,a)+eq \f(2,b)=eq \f(b+2a,ab)= eq \r(ab),且a>0,b>0,
    ∴ab eq \r(ab)=b+2a≥2 eq \r(2) eq \r(ab),∴ab≥2 eq \r(2).
    法二:由题设易知a>0,b>0,∴eq \r(ab)=eq \f(1,a)+eq \f(2,b)≥2 eq \r(\f(2,ab)),即ab≥2eq \r(2),故选C.
    答案为:C.
    解析:∵a>0,b>0,∴ab≤eq \f(a+b2,4)=eq \f(t2,4),当且仅当a=b=eq \f(t,2)时取等号.
    ∵ab的最大值为2,∴eq \f(t2,4)=2,t2=8.又t=a+b>0,∴t=eq \r(8)=2eq \r(2).
    答案为:B;
    解析:由三角形的面积公式:S=eq \f(1,2)absin C=eq \f(1,4)ab≤eq \f(1,4)×(eq \f(a+b,2))2=9,
    当且仅当a=b=6时等号成立.则△ABC面积的最大值为9.
    答案为:C
    解析:因为ab>0,所以eq \f(b,a)>0,eq \f(a,b)>0,所以eq \f(b,a)+eq \f(a,b)≥2 eq \r(\f(b,a)·\f(a,b))=2,当且仅当a=b时取等号.
    答案为:D;
    解析:因为x+4y=40,且x>0,y>0,
    所以x+4y≥2eq \r(x·4y)=4eq \r(xy).(当且仅当x=4y时取“=”)
    所以4eq \r(xy)≤40,所以xy≤100.所以lgx+lgy=lgxy≤lg100=2.
    所以lgx+lgy的最大值为2.
    答案为:C.
    解析:对选项A,当x>0时,x2+eq \f(1,4)-x=(x-eq \f(1,2))2≥0,所以lg(x2+eq \f(1,4))≥lgx;
    对选项B,当sinx<0时显然不成立;对选项C,x2+1=|x|2+1≥2|x|,一定成立;
    对选项D,因为x2+1≥1,所以0 答案为:D;
    解析:因为0<m<eq \f(1,2),所以eq \f(1,2)×2m×(1-2m)≤eq \f(1,2)×[ SKIPIF 1 < 0 ]2=eq \f(1,8),
    当且仅当2m=1-2m,即m=eq \f(1,4)时取等号,所以eq \f(1,m)+eq \f(2,1-2m)=eq \f(1,m(1-2m))≥8,
    又eq \f(1,m)+eq \f(2,1-2m)≥k2-2k恒成立,所以k2-2k-8≤0,所以-2≤k≤4.
    所以实数k的取值范围是[-2,4].故选D.
    答案为:A.
    解析:由x>0,eq \f(x,x2+3x+1)=eq \f(1,x+\f(1,x)+3),令t=x+eq \f(1,x),则t≥2eq \r(x·\f(1,x))=2,
    当且仅当x=1时,t取得最小值2.eq \f(x,x2+3x+1)取得最大值eq \f(1,5),
    所以对于任意的x>0,不等式eq \f(x,x2+3x+1)≤a恒成立,则a≥eq \f(1,5).
    答案为:4.
    解析:由等差数列的前n项和公式,
    得S2 017=eq \f(2 017a1+a2 017,2)=4 034,则a1+a2 017=4.
    由等差数列的性质得a9+a2 009=4,
    所以eq \f(1,a9)+eq \f(9,a2 009)=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,a9)+\f(9×4,a2 009)))=eq \f(1,4)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(a9+a2 009,a9)+\f(9a9+a2 009,a2 009)))
    =eq \f(1,4)eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(a2 009,a9)+\f(9a9,a2 009)))+10))≥eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(2\r(\f(a2 009,a9)×\f(9a9,a2 009))+10))=4,
    当且仅当a2 009=3a9时等号成立.
    答案为:C;
    二、填空题
    答案为:4
    解析:∵x>2,m>0,∴y=x-2+eq \f(m,x-2)+2≥2eq \r((x-2)·\f(m,x-2))+2=2eq \r(m)+2,
    当且仅当x=2+eq \r(m)时取等号,又函数y=x+eq \f(m,x-2)(x>2)的最小值为6,
    ∴2eq \r(m)+2=6,解得m=4.
    答案为:8.
    解析:[∵直线eq \f(x,a)+eq \f(y,b)=1(a>0,b>0)过点(1,2),∴eq \f(1,a)+eq \f(2,b)=1,
    ∴2a+b=(2a+b)(eq \f(1,a)+eq \f(2,b))=4+eq \f(4a,b)+eq \f(b,a)≥4+2eq \r(\f(4a,b)·\f(b,a))=8,
    当且仅当eq \f(b,a)=eq \f(4a,b),即a=2,b=4时,等号成立.故2a+b的最小值为8.]
    答案为:eq \f(9,2).
    解析:如图所示,根据题意,过点P作PE⊥AB,PF⊥AC,
    则PE=m,PF=n,
    又由AB=AC,∠BAC=120°,得∠ABC=∠ACB=30°,
    则PE=eq \f(1,2)PB,PF=eq \f(1,2)PC,即m=eq \f(1,2)PB,n=eq \f(1,2)PC.
    由PB+PC=BC=4,得m+n=2,则eq \f(4,m)+eq \f(1,n)=(eq \f(4,m)+eq \f(1,n))·eq \f(m+n,2)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(5+\f(4n,m)+\f(m,n)))≥eq \f(9,2),
    即eq \f(4,m)+eq \f(1,n)的最小值为eq \f(9,2),此时m=2n.
    答案为:8eq \r(2).
    解析:根据题意得xA=2-m,xB=2m,xC=2 eq \s\up15(-eq \f(8,2m+1)) ,xD=2 eq \s\up15(eq \f(8,2m+1)) ,
    所以a=|xA-xC|=|2-m-2 eq \s\up15(-eq \f(8,2m+1)) |,b=|xB-xD|=|2m-2 eq \s\up15(eq \f(8,2m+1)) |,
    即eq \f(b,a)=eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(2m-2 eq \s\up15(eq \f(8,2m+1)) ,2-m-2 eq \s\up15(-eq \f(8,2m+1)) )))=2 eq \s\up15(eq \f(8,2m+1)) ·2m=2 eq \s\up15(eq \f(8,2m+1)) +m.
    因为m>0,所以eq \f(8,2m+1)+m=eq \f(1,2)(2m+1)+eq \f(8,2m+1)-eq \f(1,2)≥2 eq \r(\f(1,2)2m+1·\f(8,2m+1))-eq \f(1,2)=eq \f(7,2),
    当且仅当eq \f(1,2)(2m+1)=eq \f(8,2m+1),即m=eq \f(3,2)时取等号,所以eq \f(b,a)的最小值为2eq \f(7,2)=8eq \r(2).
    相关试卷

    2023年高考数学(文数)一轮复习课时01《集合》达标练习(2份,答案版+教师版): 这是一份2023年高考数学(文数)一轮复习课时01《集合》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时01《集合》达标练习含详解doc、2023年高考数学文数一轮复习课时01《集合》达标练习教师版doc等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。

    2023年高考数学(文数)一轮复习课时46《双曲线》达标练习(2份,答案版+教师版): 这是一份2023年高考数学(文数)一轮复习课时46《双曲线》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时46《双曲线》达标练习含详解doc、2023年高考数学文数一轮复习课时46《双曲线》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    2023年高考数学(文数)一轮复习课时45《椭圆》达标练习(2份,答案版+教师版): 这是一份2023年高考数学(文数)一轮复习课时45《椭圆》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时45《椭圆》达标练习含详解doc、2023年高考数学文数一轮复习课时45《椭圆》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年高考数学(文数)一轮复习课时34《基本不等式》达标练习(2份,答案版+教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map