14概率与统计(选择题、填空题)(理科专用)-三年(2020-2022)高考数学真题分项汇编(全国通用)
展开三年专题14 概率与统计(选择题、填空题)
(理科专用)
1.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大
【答案】D
【解析】
【分析】
该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率;该棋手在第二盘与丙比赛且连胜两盘的概率.并对三者进行比较即可解决
【详解】
该棋手连胜两盘,则第二盘为必胜盘,
记该棋手在第二盘与甲比赛,且连胜两盘的概率为
则
记该棋手在第二盘与乙比赛,且连胜两盘的概率为
则
记该棋手在第二盘与丙比赛,且连胜两盘的概率为
则
则
即,,
则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;
与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.
故选:D
2.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
【答案】D
【解析】
【分析】
由古典概型概率公式结合组合、列举法即可得解.
【详解】
从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.
故选:D.
3.【2021年甲卷理科】已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据双曲线的定义及条件,表示出,结合余弦定理可得答案.
【详解】
因为,由双曲线的定义可得,
所以,;
因为,由余弦定理可得,
整理可得,所以,即.
故选:A
【点睛】
关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.
4.【2021年甲卷理科】将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
【答案】C
【解析】
【分析】
采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.
【详解】
将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,
若2个0相邻,则有种排法,若2个0不相邻,则有种排法,
所以2个0不相邻的概率为.
故选:C.
5.【2021年乙卷理科】在区间与中各随机取1个数,则两数之和大于的概率为( )
A. B. C. D.
【答案】B
【解析】
【分析】
设从区间中随机取出的数分别为,则实验的所有结果构成区域为,设事件表示两数之和大于,则构成的区域为,分别求出对应的区域面积,根据几何概型的的概率公式即可解出.
【详解】
如图所示:
设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为.
设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以.
故选:B.
【点睛】
本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件对应的区域面积,即可顺利解出.
6.【2021年新高考1卷】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立 B.甲与丁相互独立
C.乙与丙相互独立 D.丙与丁相互独立
【答案】B
【解析】
【分析】
根据独立事件概率关系逐一判断
【详解】
,
故选:B
【点睛】
判断事件是否独立,先计算对应概率,再判断是否成立
7.【2021年新高考2卷】某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A.越小,该物理量在一次测量中在的概率越大
B.该物理量在一次测量中大于10的概率为0.5
C.该物理量在一次测量中小于9.99与大于10.01的概率相等
D.该物理量在一次测量中落在与落在的概率相等
【答案】D
【解析】
【分析】
由正态分布密度曲线的特征逐项判断即可得解.
【详解】
对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;
对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;
对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;
对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.
故选:D.
8.【2020年新课标1卷理科】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据散点图的分布可选择合适的函数模型.
【详解】
由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.
故选:D.
【点睛】
本题考查函数模型的选择,主要观察散点图的分布,属于基础题.
9.【2020年新课标2卷理科】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
【答案】B
【解析】
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】
由题意,第二天新增订单数为,
,故至少需要志愿者名.
故选:B
【点晴】
本题主要考查函数模型的简单应用,属于基础题.
10.【2020年新课标3卷理科】在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.
【详解】
对于A选项,该组数据的平均数为,
方差为;
对于B选项,该组数据的平均数为,
方差为;
对于C选项,该组数据的平均数为,
方差为;
对于D选项,该组数据的平均数为,
方差为.
因此,B选项这一组的标准差最大.
故选:B.
【点睛】
本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.
11.【2020年新高考1卷(山东卷)】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56%
C.46% D.42%
【答案】C
【解析】
【分析】
记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,然后根据积事件的概率公式可得结果.
【详解】
记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,
则,,,
所以
所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.
故选:C.
【点睛】
本题考查了积事件的概率公式,属于基础题.
12.【2021年新高考1卷】有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
【答案】CD
【解析】
【分析】
A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.
【详解】
A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;
故选:CD
13.【2021年新高考2卷】下列统计量中,能度量样本的离散程度的是( )
A.样本的标准差 B.样本的中位数
C.样本的极差 D.样本的平均数
【答案】AC
【解析】
【分析】
考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.
【详解】
由标准差的定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;
由极差的定义可知,极差考查的是数据的离散程度;
由平均数的定义可知,平均数考查的是数据的集中趋势;
故选:AC.
14.【2020年新高考1卷(山东卷)】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
【答案】AC
【解析】
【分析】
对于A选项,求得,由此判断出A选项;对于B选项,利用特殊值法进行排除;对于C选项,计算出,利用对数函数的性质可判断出C选项;对于D选项,计算出 ,利用基本不等式和对数函数的性质判断出D选项.
【详解】
对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,
所以,
当时,,
当时,,
两者相等,所以B选项错误.
对于C选项,若,则
,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且 ( ).
.
由于,所以 ,所以 ,
所以,
所以,所以D选项错误.
故选:AC
【点睛】
本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.
15.【2020年新高考2卷(海南卷)】我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是
A.这11天复工指数和复产指数均逐日增加;
B.这11天期间,复产指数增量大于复工指数的增量;
C.第3天至第11天复工复产指数均超过80%;
D.第9天至第11天复产指数增量大于复工指数的增量;
【答案】CD
【解析】
【分析】
注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD正确.
【详解】
由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;
由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;
由图可知,第3天至第11天复工复产指数均超过80%,故C正确;
由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;
【点睛】
本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.
16.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
【答案】.
【解析】
【分析】
根据古典概型的概率公式即可求出.
【详解】
从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
故答案为:.
17.【2022年新高考2卷】已知随机变量X服从正态分布,且,则____________.
【答案】##.
【解析】
【分析】
根据正态分布曲线的性质即可解出.
【详解】
因为,所以,因此.
故答案为:.
高考数学真题分项汇编三年(2021-2023)(全国通用)专题14+概率与统计(选择题、填空题)(理): 这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题14+概率与统计(选择题、填空题)(理),文件包含专题14概率与统计选择题填空题理全国通用解析版docx、专题14概率与统计选择题填空题理全国通用原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
05立体几何(选择题、填空题)(理科专用)-三年(2020-2022)高考数学真题分项汇编(全国通用): 这是一份05立体几何(选择题、填空题)(理科专用)-三年(2020-2022)高考数学真题分项汇编(全国通用),文件包含三年专题05立体几何选择题填空题理科专用教师版docx、三年专题05立体几何选择题填空题理科专用学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
15概率与统计(解答题)(理科专用)-三年(2020-2022)高考数学真题分项汇编(全国通用): 这是一份15概率与统计(解答题)(理科专用)-三年(2020-2022)高考数学真题分项汇编(全国通用),文件包含三年专题15概率与统计解答题理科专用教师版docx、三年专题15概率与统计解答题理科专用学生版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。