所属成套资源:2020-2022 三年高考数学真题分项汇编(试卷+解析)通用版
13不等式、推理与证明-三年(2020-2022)高考数学真题分项汇编(全国通用)
展开这是一份13不等式、推理与证明-三年(2020-2022)高考数学真题分项汇编(全国通用),文件包含三年专题13不等式推理与证明教师版docx、三年专题13不等式推理与证明学生版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
三年专题13 不等式、推理与证明
1.【2022年全国乙卷】若x,y满足约束条件则的最大值是( )
A. B.4 C.8 D.12
【答案】C
【解析】
【分析】
作出可行域,数形结合即可得解.
【详解】
由题意作出可行域,如图阴影部分所示,
转化目标函数为,
上下平移直线,可得当直线过点时,直线截距最小,z最大,
所以.
故选:C.
2.【2021年乙卷文科】若满足约束条件则的最小值为( )
A.18 B.10 C.6 D.4
【答案】C
【解析】
【分析】
由题意作出可行域,变换目标函数为,数形结合即可得解.
【详解】
由题意,作出可行域,如图阴影部分所示,
由可得点,
转换目标函数为,
上下平移直线,数形结合可得当直线过点时,取最小值,
此时.
故选:C.
3.【2021年乙卷文科】下列函数中最小值为4的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出不符合题意,符合题意.
【详解】
对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
对于D,,函数定义域为,而且,如当,,D不符合题意.
故选:C.
【点睛】
本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.
4.【2020年新课标3卷文科】已知函数f(x)=sinx+,则()
A.f(x)的最小值为2 B.f(x)的图象关于y轴对称
C.f(x)的图象关于直线对称 D.f(x)的图象关于直线对称
【答案】D
【解析】
【分析】
根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.
【详解】
可以为负,所以A错;
关于原点对称;
故B错;
关于直线对称,故C错,D对
故选:D
【点睛】
本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.
5.【2022年新高考2卷】若x,y满足,则( )
A. B.
C. D.
【答案】BC
【解析】
【分析】
根据基本不等式或者取特值即可判断各选项的真假.
【详解】
因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;
由可变形为,解得,当且仅当时取等号,所以C正确;
因为变形可得,设,所以,因此
,所以当时满足等式,但是不成立,所以D错误.
故选:BC.
6.【2020年新高考1卷(山东卷)】已知a>0,b>0,且a+b=1,则( )
A. B.
C. D.
【答案】ABD
【解析】
【分析】
根据,结合基本不等式及二次函数知识进行求解.
【详解】
对于A,,
当且仅当时,等号成立,故A正确;
对于B,,所以,故B正确;
对于C,,
当且仅当时,等号成立,故C不正确;
对于D,因为,
所以,当且仅当时,等号成立,故D正确;
故选:ABD
【点睛】
本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.
7.【2020年新课标1卷理科】若x,y满足约束条件则z=x+7y的最大值为______________.
【答案】1
【解析】
【分析】
首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.
【详解】
绘制不等式组表示的平面区域如图所示,
目标函数即:,
其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程:,可得点A的坐标为:,
据此可知目标函数的最大值为:.
故答案为:1.
【点睛】
求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
8.【2020年新课标2卷文科】若x,y满足约束条件则的最大值是__________.
【答案】
【解析】
【分析】
在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线,在平面区域内找到一点使得直线在纵轴上的截距最大,求出点的坐标代入目标函数中即可.
【详解】
不等式组表示的平面区域为下图所示:
平移直线,当直线经过点时,直线在纵轴上的截距最大,
此时点的坐标是方程组的解,解得:,
因此的最大值为:.
故答案为:.
【点睛】
本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.
9.【2020年新课标3卷理科】若x,y满足约束条件 ,则z=3x+2y的最大值为_________.
【答案】7
【解析】
【分析】
作出可行域,利用截距的几何意义解决.
【详解】
不等式组所表示的可行域如图
因为,所以,易知截距越大,则越大,
平移直线,当经过A点时截距最大,此时z最大,
由,得,,
所以.
故答案为:7.
【点晴】
本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.
10.【2020年新课标3卷理科】关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
【答案】②③
【解析】
【分析】
利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.
【详解】
对于命题①,,,则,
所以,函数的图象不关于轴对称,命题①错误;
对于命题②,函数的定义域为,定义域关于原点对称,
,
所以,函数的图象关于原点对称,命题②正确;
对于命题③,,
,则,
所以,函数的图象关于直线对称,命题③正确;
对于命题④,当时,,则,
命题④错误.
故答案为:②③.
【点睛】
本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.
相关试卷
这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题13+不等式、推理与证明,文件包含专题13不等式推理与证明全国通用解析版docx、专题13不等式推理与证明全国通用原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份2021-2023年高考数学真题分项汇编专题13不等式、推理与证明(全国通用)(Word版附解析),共13页。试卷主要包含了若,满足约束条件则的最大值是,若,满足约束条件则的最小值为等内容,欢迎下载使用。
这是一份20不等式选讲-三年(2020-2022)高考数学真题分项汇编(全国通用),文件包含三年专题20不等式选讲教师版docx、三年专题20不等式选讲学生版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。