高一数学下学期期末精选50题(提升版)-2021-2022学年高一数学考试满分全攻略(人教A版2019必修第二册)(原卷版)
展开这是一份高一数学下学期期末精选50题(提升版)-2021-2022学年高一数学考试满分全攻略(人教A版2019必修第二册)(原卷版),共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高一数学下学期期末精选50题(提升版)(人教A版2019)
一、单选题
1.(2022·青海·海南藏族自治州高级中学高一期末)我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则( )
A. B.
C. D.
2.(2022·江西·景德镇一中高一期末)在中,的平分线交于点,,则周长的最小值为( )
A. B. C. D.
3.(2022·江西·景德镇一中高一期末)已知向量,若向量在方向上的投影为,则( )
A. B. C.或13 D.3
4.(2022·青海海东·高一期末)在矩形ABCD中,,,且,则( )
A. B.5 C. D.4
5.(2021·山东淄博·高一期末)复数( )
A. B. C. D.
6.(2022·陕西商洛·高一期末)某几何体的三视图如图所示(单位:cm),则该几何体的表面积为( )
A. B.
C. D.
7.(2022·陕西渭南·高一期末)古希腊数学家阿基米德最为满意的一个数学发现是“圆柱容球”,即在球的直径与圆柱底面的直径和圆柱的高相等时,球的体积是圆柱体积的,且球的表面积也是圆柱表面积的.已知体积为的圆柱的轴截面为正方形.则该圆柱内切球的表面积为( )
A. B. C. D.
8.(2022·陕西·西安建筑科技大学附属中学高一期末)如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是( )
A.30° B.45° C.60° D.90°
9.(2022·陕西·宝鸡市金台区教育体育局教研室高一期末)在正方体中,有以下结论:①面;②;③与是异面直线;④与成角,其中正确的结论共有( )
A.1个 B.2个 C.3个 D.4个
10.(2022·陕西·宝鸡市金台区教育体育局教研室高一期末)过直线外两点,作与平行的平面,则这样的平面( )
A.不可能作出 B.只能作出一个
C.能作出无数个 D.上述三种情况都存在
11.(2022·浙江省开化中学高一期末)为庆祝中国共产党成立100周年,深入推进党史学习教育,某中学党支部组织学校初、高中两个学部的党员参加了全省教育系统的党史知识竞赛活动,其中初中部20名党员竞赛成绩的平均分为a,方差为2;高中部50名党员竞赛成绩的平均分为b,方差为.若a=b,则该学校全体参赛党员竞赛成绩的方差为( )
A. B. C. D.
二、多选题
12.(2022·贵州·遵义四中高一期末)一物体受到3个力的作用,其中重力的大小为,水平拉力的大小为,力未知,则( )
A.当该物体处于平衡状态时,Ν
B.当物体所受合力为时,Ν
C.当时,
D.当时,必存在实数,使得
13.(2022·福建师大附中高一期末)已知O为坐标原点,点A(1,0),P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α + β), sin(α + β)),则( )
A.OP1 = OP2 B.AP1= AP2 C.P1P2 = AP3 D.P2P3 = AP1
14.(2021·湖北·高一期末)对任意复数,,为虚数单位,是的共轭复数,则下列结论正确的有( )
A. B.
C. D.
15.(2021·广东广州·高一期末)已知复数,下列说法正确的是( )
A.复数z的虚部是 B.复数z的模为5
C.复数z的共轭复数是 D.在复平面内复数z对应的点在第四象限
16.(2021·山东青岛·高一期末)设复数,为虚数单位,,则下列结论正确的为( )
A.当时,则复数在复平面上对应的点位于第四象限
B.若复数在复平面上对应的点位于直线上,则
C.若复数是纯虚数,则
D.在复平面上,复数对应的点为,为原点,若,则
17.(2021·广东佛山·高一期末)下列命题中正确的有( )
A.若复数满足,则; B.若复数满足,则;
C.若复数满足,则; D.若复数,则.
18.(2021·浙江省桐庐中学高一期末)是著名的欧拉公式,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系.若,,恒成立且,则表示的复数不可能位于复平面中的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
19.(2021·湖南·宁乡市教育研究中心高一期末)设,,为复数,.下列命题中正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
20.(2022·江西宜春·高一期末)已知数据的平均数为,标准差为,则( )
A.数据的平均数为,标准差为
B.数据的平均数为,标准差为
C.数据的平均数为,方差为
D.数据的平均数为,方差为
三、填空题
21.(2022·福建省福州第一中学高一期末)在平面四边形中,,若,则__________.
22.(2022·辽宁·育明高中高一期末)已知一条直线l与平行四边形ABCD中的两边AB,AD分别交于点E,F,且满足,,点M在直线l上,,则的值为______.
23.(2021·湖北·高一期末)已知,复平面内表示复数的点在虚轴上,则m=_____________.
24.(2022·陕西商洛·高一期末)在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同 的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:
①CG//平面ADE; ②该几何体的上底面的周长为;
③该几何体的的体积为; ④三棱锥F-ABC的外接球的表面积为.
其中所有正确结论的序号是____________.
25.(2022·江西·景德镇一中高一期末)我国古代的一些数字诗精巧有趣,又饱含生活的哲学,如清代郑板桥的《题画竹》》:“一两三枝竹竿,四五六片竹叶,自然淡淡疏疏,何必重重叠叠.”现从1,2,3,4,5,6中随机选取2个不同的数字组成,则恰好能使得的概率是____________.
四、解答题
26.(2022·福建省福州第一中学高一期末)在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.
在中,角所对的边分别为,__________.
(1)求角;
(2)求的取值范围.
27.(2022·湖南衡阳·高一期末)如图所示,已知直线,,并交于点,交于点,是上一定点,是直线上一动点,作,且使与直线交于点,设.
(1)若,试比较△与△面积的大小;
(2)若,,求△与△面积之和的最小值.
28.(2022·江西·景德镇一中高一期末)在中,若,求证:.
29.(2022·辽宁·大连二十四中高一期末)如图所示,中,,,为的中点,为上的一点,且,的延长线与的交点为.
(1)用向量,表示;
(2)用向量,表示,并求出和的值.
30.(2022·内蒙古包头·高一期末)是平面直角坐标系的原点,,,记,,.
(1)求与向量共线反向的单位向量;
(2)若四边形OABC为平行四边形,求点的坐标;
(3)若,且,求实数的值.
31.(2022·重庆八中高一期末)已知,.
(1)若与的夹角为,求;
(2)若与不共线,当为何值时,向量与互相垂直?
32.(2022·山东滨州·高一期末)如图,扇形OPQ的半径为1,圆心角为,平行四边形ABCD的顶点C在扇形弧上,D在半径OQ上,A,B在半径OP上,记平行四边形ABCD的面积为S,.
(1)用表示平行四边形ABCD的面积S;
(2)当取何值时,平行四边形ABCD的面积S最大?并求出这个最大面积.
33.(2022·浙江·镇海中学高一期末)在如图所示的平面图形中,已知,,,,求:
(1)设,求的值;
(2)若,且,求的最小值及此时的夹角.
34.(2021·湖北·高一期末)已知是关于的方程的一个根,其中为虚数单位.
(1)求的值;
(2)记复数,求复数的模.
35.(2021·山东青岛·高一期末)试分别解答下列两个小题:
(1)已知,,为虚数单位,,求复数;
(2)已知复数与都是纯虚数,,为虚数单位,若,试求实数的值.
36.(2022·陕西·铜川阳光中学高一期末)如图,四边形是矩形,平面,平面,,.
(1)证明:平面平面;
(2)求三棱锥的体积.
37.(2022·宁夏·银川一中高一期末)如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:平面MAP⊥平面SAC.
(2)求二面角M—AC—B的平面角的正切值;
38.(2022·陕西咸阳·高一期末)如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:
(1)平面平面;
(2)平面平面.
39.(2022·陕西·西安建筑科技大学附属中学高一期末)如图,在三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D为线段AC的中点,E为线段PC上一点.
(1)求证:平面BDE⊥平面PAC;
(2)求二面角P-BC-A的平面角的大小.
40.(2022·陕西汉中·高一期末)如图,四棱锥的底面为矩形,,.
(1)证明:平面平面.
(2)若,,,求点到平面的距离.
41.(2022·陕西榆林·高一期末)如图1,在边长为4的等边三角形ABC中,D,E,F分别是AB,AC,BC的中点,沿DE把△ADE折起,得到如图2所示的四棱锥.
(1)证明:EF//平面A1BD;
(2)若平面DE⊥平面BCED,求三棱锥﹣CEF的体积.
42.(2022·北京师大附中高一期末)为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图,根据直方图所提供的信息:
(1)求出图中a的值;
(2)求该班学生这个周末的学习时间不少于20小时的人数;
(3)如果用该班学生周末的学习时间作为样本去推断该校高一年级全体学生周末的学习时间,这样推断是否合理?说明理由.
43.(2022·江西新余·高一期末)某中学从高一学生中抽取n名学生参加数学竞赛,成绩(单位:分)的分组及根据各组数据绘制的频率分布直方图如图所示,已知成绩的范围是区间[40,100),且成绩在区间[70,90)的学生人数是27人.
(1)求x,n的值;
(2)估计这次数学竞赛成绩的中位数和平均分(结果保留一位小数).
44.(2022·江西赣州·高一期末)随着新课程改革和高考综合改革的实施,学习评价更关注学科核心素养的形成和发展,为此,某市于2021年举行第一届高中文科素养竞赛,竞赛结束后,为了评估该市高中学生的文科素养,从所有参赛学生中随机抽取1000名学生的成绩(单位:分)作为样本进行估计,将抽取的成绩整理后分成五组,从左到右依次记为,,,,,并绘制成如图所示的频率分布直方图.
(1)请补全频率分布直方图并估计这1000名学生成绩的平均数和计算80%分位数(求平均值时同一组数据用该组区间的中点值作代表);
(2)现从以上各组中采用分层随机抽样的方法抽取20人.若第三组学生实际成绩的平均数与方差分别为74分和2,第四组学生实际成绩的平均数与方差分别为84分和1,求这20人中分数在区间所有人的成绩的方差.
45.(2022·贵州·遵义四中高一期末)2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图.
(1)求a的值以及这100人中测试成绩在[80,85)的人数;
(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);
(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率.
46.(2022·河南焦作·高一期末)某化肥厂有甲、乙两个车间生产同一种产品,从两个车间生产的产品中各随机抽取7包称重,记录数据如下(单位:):
甲:
乙:
(1)计算甲、乙两个车间抽取的产品质量的平均数与方差,并说明哪个车间产品质量比较稳定;
(2)从两组数据中各随机抽取一个不小于100的数据,甲组中抽取的数据记为x,乙组中抽取的数据记为y,求的概率.
47.(2022·江西宜春·高一期末)第19届亚运会将于2022年9月在杭州举行,志愿者的服务工作是亚运会成功举办的重要保障,某高校承办了杭州志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[45,55),第二组[55,65),第三组[65,75),第四组[75,85),第五组[85,95),绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.
(1)求a,b的值;
(2)估计这100名候选者面试成绩的众数,平均数;
(3)在第四、第五两组志愿者中,现采用分层抽样的方法,从中抽取5人,然后再从这5人中选出2人,以确定组长人选,求选出的两人来自不同组的概率.
48.(2022·辽宁·渤海大学附属高级中学高一期末)近两年来中国猪肉市场由于受到国内外多种因素的影响,导致猪肉的市场零售均价一直居高不下,在一个高价区域范围内上下波动.政府为监控猪肉市场零售均价行情需要了解真实情况,在2021年5月份的某一天,某市的物价主管部门派相关专业人员对全市零售猪肉的销售均价进行摸底,随机抽样调查了100家超市了解情况,得到这些超市在当天的猪肉零售均价(单位:元/公斤)x的频数分布表如下:
x的分组 | |||||
超市家数 |
(1)请分别估计该市在当天的猪肉零售均价不低于54元/公斤的超市比例和零售均价小于50元/公斤的超市比例;
(2)用分层抽样的方法在样本均价位于分组区间和(单位:元/公斤)的超市中抽取5家超市,再从这5家超市中任选2家超市进行市场零售均价调控约谈,问选出的2家超市的均价都在区间内的概率?
49.(2022·江西·景德镇一中高一期末)某部门举办法律知识问答活动,随机从该市18~68岁的人群中抽取了一个容量为的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],再将其分别编号为第1组、第2组、…、第5组.该部门对回答问题的情况进行统计后,绘制了下表和如图所示的频率分布直方图.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的比例 |
第1组 | [18,28) | 5 | 0.5 |
第2组 | [28,38) | 18 | |
第3组 | [38,48) | 27 | 0.9 |
第4组 | [48,58) | 0.36 | |
第5组 | [58,68] | 3 | 0.2 |
(1)分别求出的值.
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各应抽取多少人?
(3)在(2)的前提下,在所抽取的6人中随机抽取2人颁发幸运奖,求第2组至少有1人获得幸运奖的概率.
50.(2022·陕西商洛·高一期末)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,.
(1)证明:.
(2)若,求四棱锥的体积.
相关试卷
这是一份高一数学下学期期末精选50题(基础版)-2021-2022学年高一数学考试满分全攻略(人教A版2019必修第二册)(解析版),共31页。试卷主要包含了单选题,多选题,双空题,填空题,解答题等内容,欢迎下载使用。
这是一份高一数学下学期期末精选50题(压轴版)-2021-2022学年高一数学考试满分全攻略(人教A版2019必修第二册)(原卷版),共15页。试卷主要包含了单选题,多选题,双空题,填空题,解答题等内容,欢迎下载使用。
这是一份高一数学下学期期末精选50题(压轴版)-2021-2022学年高一数学考试满分全攻略(人教A版2019必修第二册),文件包含高一数学下学期期末精选50题压轴版-2021-2022学年高一数学考试满分全攻略人教A版2019必修第二册解析版docx、高一数学下学期期末精选50题压轴版-2021-2022学年高一数学考试满分全攻略人教A版2019必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。