2021-2022学年广东省深圳市名校中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )
A.12cm B.12cm C.24cm D.24cm
2.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )
A. B. C. D.
3.下列计算正确的是( )
A. += B.﹣= C.×=6 D.=4
4.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A. B. C. D.
5.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为( )
A. B. C. D.
6.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( )
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5
7.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
A.40° B.36° C.50° D.45°
8.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
9.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
10.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.
12.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.
13.在函数中,自变量x的取值范围是_________.
14.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
15.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.
16.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.
三、解答题(共8题,共72分)
17.(8分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是_____度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
18.(8分)已知是关于的方程的一个根,则__
19.(8分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.
(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 ,推断的数学依据是 .
(2)如图②,在△ABC中,∠B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距.
(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.
20.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.
21.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.
(1)若a+e=0,则代数式b+c+d= ;
(2)若a是最小的正整数,先化简,再求值:;
(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是 .
22.(10分)解不等式组并写出它的所有整数解.
23.(12分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.
请你根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;
(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
24.如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.
(1)求证:PD是⊙O的切线;
(2)若AB=4,DA=DP,试求弧BD的长;
(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
【详解】
如图,过A作AD⊥BF于D,
∵∠ABD=45°,AD=12,
∴=12,
又∵Rt△ABC中,∠C=30°,
∴AC=2AB=24,
故选:D.
【点睛】
本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
2、B
【解析】
主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B.
3、B
【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
【详解】
解:A、与不能合并,所以A选项不正确;
B、-=2−=,所以B选项正确;
C、×=,所以C选项不正确;
D、=÷=2÷=2,所以D选项不正确.
故选B.
【点睛】
此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
4、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
5、A
【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
【详解】
解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
∴BD=5,
在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
∴BF2=32+(4-BF)2,
解得BF=,
∴AF=4-=.
过G作GH∥BF,交BD于H,
∴∠FBD=∠GHD,∠BGH=∠FBG,
∵FB=FD,
∴∠FBD=∠FDB,
∴∠FDB=∠GHD,
∴GH=GD,
∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
又∵∠FBG=∠BGH,∠FBG=∠GBH,
∴BH=GH,
设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
∵GH∥FB,
∴ =,即=,
解得x=.
故选A.
【点睛】
本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
6、C
【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
【详解】
解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.
【点睛】
本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
7、B
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°.
故选B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
8、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
9、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
10、C
【解析】
试题解析:观察二次函数图象可知:
∴一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、32°
【解析】
根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.
【详解】
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案为32°.
12、 .
【解析】
试题分析:696000=6.96×1,故答案为6.96×1.
考点:科学记数法—表示较大的数.
13、x≤1且x≠﹣1
【解析】
试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.
考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.
14、
【解析】
根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.
【详解】
∵点A坐标为(3,4),
∴OA==5,
∴cosα=,
故答案为
【点睛】
本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.
15、m.
【解析】
利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.
【详解】
解:易得扇形的圆心角所对的弦是直径,
∴扇形的半径为: m,
∴扇形的弧长为: =πm,
∴圆锥的底面半径为:π÷2π=m.
【点睛】
本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.
16、y=(x﹣1)2+
【解析】
直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.
【详解】
解:y=x2-x+3=(x-)2+,
∴N点坐标为:(,),
令x=0,则y=3,
∴M点的坐标是(0,3).
∵平移该抛物线,使点M平移后的对应点M′与点N重合,
∴抛物线向下平移个单位长度,再向右平移个单位长度即可,
∴平移后的解析式为:y=(x-1)2+.
故答案是:y=(x-1)2+.
【点睛】
此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.
三、解答题(共8题,共72分)
17、(1)117;(2)答案见图;(3)B;(4)30.
【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.
【详解】
(1)∵总人数为18÷45%=40人,
∴C等级人数为40﹣(4+18+5)=13人,
则C对应的扇形的圆心角是360°×=117°,
故答案为:117;
(2)补全条形图如下:
(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案为:B.
(4)估计足球运球测试成绩达到A级的学生有300×=30人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
18、10
【解析】
利用一元二次方程的解的定义得到,再把 变形为,然后利用整体代入的方法计算 .
【详解】
解:是关于的方程的一个根,
,
,
.
故答案为 10 .
【点睛】
本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .
19、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3).
【解析】
试题分析:(1)根据线段的垂直平分线的性质即可判断.
(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.
(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.
解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等
(2)解:如图②中,作AE⊥BC于E.
在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,
∴AE=BE=3,
∵AD为BC边中线,BC=8,
∴BD=DC=1,
∴DE=BD﹣BE=1﹣3=1,
∴边BC的中垂距为1
(3)解:如图③中,作CH⊥AF于H.
∵四边形ABCD是矩形,
∴∠D=∠EHC=∠ECF=90°,AD∥BF,
∵DE=EC,∠AED=∠CEF,
∴△ADE≌△FCE,
∴AE=EF,
在Rt△ADE中,∵AD=1,DE=3,
∴AE= =5,
∵∠D=EHC,∠AED=∠CEH,
∴△ADE∽△CHE,
∴ = ,
∴ = ,
∴EH= ,
∴△ACF中边AF的中垂距为
20、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
【解析】
(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
【详解】
解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
得. ∴点B的坐标是(-5,-4)
设直线AB的解析式为,
将 A(3,)、B(-5,-4)代入得,
, 解得:.
∴直线AB的解析式为:
(2)四边形CBED是菱形.理由如下:
点D的坐标是(3,0),点C的坐标是(-2,0).
∵ BE∥轴, ∴点E的坐标是(0,-4).
而CD =5, BE=5,且BE∥CD.
∴四边形CBED是平行四边形
在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
∴□CBED是菱形
21、 (1)0;(1) ,;(3) ﹣1<x<1.
【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;
(1)根据题意可得:a=1,将分式计算并代入可得结论即可;
(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.
【详解】
解:(1)∵a+e=0,即a、e互为相反数,
∴点C表示原点,
∴b、d也互为相反数,
则a+b+c+d+e=0,
故答案为:0;
(1)∵a是最小的正整数,
∴a=1,
则原式=÷[+]
=÷
=•
=,
当a=1时,
原式==;
(3)∵A、B、C、D、E为连续整数,
∴b=a+1,c=a+1,d=a+3,e=a+4,
∵a+b+c+d=1,
∴a+a+1+a+1+a+3=1,
4a=﹣4,
a=﹣1,
∵MA+MD=3,
∴点M再A、D两点之间,
∴﹣1<x<1,
故答案为:﹣1<x<1.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.
22、不等式组的整数解有﹣1、0、1.
【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.
【详解】
,
解不等式①可得,x>-2;
解不等式②可得,x≤1;
∴不等式组的解集为:﹣2<x≤1,
∴不等式组的整数解有﹣1、0、1.
【点睛】
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.
23、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
【解析】
(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
(2)根据众数的定义求解即可;
(3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
【详解】
(1)∵被调查的总人数为60÷30%=200人,
∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
补全图形如下:
(2)由条形图知,B情况出现次数最多,
所以众数为B,
故答案为B.
(3)1500×5%=75,
答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
【点睛】
本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.
24、(1)见解析;(2);(3).
【解析】
(1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
(2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
(3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
【详解】
(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
且D在圆上,∴PD是⊙O的切线.
(2)设∠A=x,
∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
在△ABD中,
∠A+∠ABD=90o,x=2x=90o,即x=30o,
∴∠DOB=60o,∴弧BD长.
(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
在Rt△BDF中,DF=,
由△OMN∽△FDN得.
【点睛】
本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
广东省深圳市星火教育市级名校2021-2022学年中考数学模拟试题含解析: 这是一份广东省深圳市星火教育市级名校2021-2022学年中考数学模拟试题含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
广东省深圳市坪山区2021-2022学年中考数学全真模拟试卷含解析: 这是一份广东省深圳市坪山区2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了计算,下列计算正确的是等内容,欢迎下载使用。
2022年广东省深圳市龙文一对一重点达标名校中考数学全真模拟试题含解析: 这是一份2022年广东省深圳市龙文一对一重点达标名校中考数学全真模拟试题含解析,共20页。试卷主要包含了若分式方程无解,则a的值为,计算÷的结果是,如图所示的工件,其俯视图是等内容,欢迎下载使用。