2021-2022学年安徽省合肥市市级名校中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )
A.2 B. C. D.
2.方程的解为( )
A.x=4 B.x=﹣3 C.x=6 D.此方程无解
3.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
A.40° B.45° C.50° D.55°
4.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.
其中正确的个数为
A.1 B.2 C.3 D.4
5.下列运算不正确的是
A. B.
C. D.
6.如图,由四个正方体组成的几何体的左视图是( )
A. B. C. D.
7.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( )
A.2 B.2 C.3 D.
8.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )
A.3 B.6 C.9 D.36
9.方程的解是
A.3 B.2 C.1 D.0
10.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
A.60° B.120° C.60°或120° D.30°或120°
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:a3﹣a=_____.
12.如图,数轴上点A表示的数为a,化简:a_____.
13.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.
14.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.
15.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为______________.
17.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .
三、解答题(共7小题,满分69分)
18.(10分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
分组
分数段(分)
频数
A
36≤x<41
22
B
41≤x<46
5
C
46≤x<51
15
D
51≤x<56
m
E
56≤x<61
10
(1)求全班学生人数和m的值;
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
19.(5分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
(1)求线段DE的长度;
(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.
20.(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
产品名称
核桃
花椒
甘蓝
每辆汽车运载量(吨)
10
6
4
每吨土特产利润(万元)
0.7
0.8
0.5
若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
(1)求y与x之间的函数关系式;
(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
21.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)
22.(10分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
23.(12分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
(1)求此抛物线所对应的函数表达式.
(2)求PF的长度,用含m的代数式表示.
(3)当四边形PEDF为平行四边形时,求m的值.
24.(14分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.
【详解】
过P作x轴的垂线,交x轴于点A,
∵P(2,4),
∴OA=2,AP=4,.
∴
∴.
故选B.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.
2、C
【解析】
先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.
【详解】
方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C
【点睛】
本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.
3、D
【解析】
试题分析:如图,
连接OC,
∵AO∥DC,
∴∠ODC=∠AOD=70°,
∵OD=OC,
∴∠ODC=∠OCD=70°,
∴∠COD=40°,
∴∠AOC=110°,
∴∠B=∠AOC=55°.
故选D.
考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
4、B
【解析】
分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
当x=1时,y=1+b+c=1,故②错误。
∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。
综上所述,正确的结论有③④两个,故选B。
5、B
【解析】
,B是错的,A、C、D运算是正确的,故选B
6、B
【解析】
从左边看可以看到两个小正方形摞在一起,故选B.
7、A
【解析】
连接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B关于AC对称,
则BE交于AC的点是P点,此时PD+PE最小,
∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
∴此时PD+PE最小,
此时PD+PE=BE,
∵正方形的面积是12,等边三角形ABE,
∴BE=AB=,
即最小值是2,
故选A.
【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
8、C
【解析】
设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.
【详解】
设抛物线解析式为y=-(x-m)(x-m+6),
∵y=-[x2-2(m-3)x+(m-3)2-1]
=-[x-(m-3)]2+1,
∴抛物线的顶点坐标为(m-3,1),
∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,
即n=1.
故选C.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
9、A
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,
经检验x=3是分式方程的解.故选A.
10、C
【解析】
根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
【详解】
如图所示,
∵OD⊥AB,
∴D为AB的中点,即AD=BD=,
在Rt△AOD中,OA=5,AD=,
∴sin∠AOD=,
又∵∠AOD为锐角,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠ACB=∠AOB=60°,
又∵圆内接四边形AEBC对角互补,
∴∠AEB=120°,
则此弦所对的圆周角为60°或120°.
故选C.
【点睛】
此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、a(a+1)(a﹣1)
【解析】
解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).
12、1.
【解析】
直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【详解】
由数轴可得:0<a<1,
则a+=a+=a+(1﹣a)=1.
故答案为1.
【点睛】
本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.
13、1
【解析】
根据三视图的定义求解即可.
【详解】
主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,
俯视图是三个小正方形,俯视图的面积是3,
左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,
几何体的三视图的面积之和是4+3+2=1,
故答案为1.
【点睛】
本题考查了简单组合体的三视图,利用三视图的定义是解题关键.
14、
【解析】
试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
故答案为x>1.
15、.
【解析】
平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
【详解】
∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
故答案为:y=1(x﹣1)1+1.
【点睛】
本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
16、
【解析】
设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.
【详解】
依题意得:.
故答案为.
【点睛】
考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
17、2
【解析】
试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.
考点:反比例函数系数k的几何意义.
三、解答题(共7小题,满分69分)
18、(1)50,18;(2)中位数落在51﹣56分数段;(3).
【解析】
(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;
(2)利用中位数的定义得出中位数的位置;
(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.
【详解】
解:(1)由题意可得:全班学生人数:15÷30%=50(人);
m=50﹣2﹣5﹣15﹣10=18(人);
(2)∵全班学生人数:50人,
∴第25和第26个数据的平均数是中位数,
∴中位数落在51﹣56分数段;
(3)如图所示:
将男生分别标记为A1,A2,女生标记为B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).
【点睛】
本题考查列表法与树状图法,频数(率)分布表,扇形统计图,中位数.
19、 (1)2 ;(2) ;(3)见解析.
【解析】
分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
本题解析:(1)对于抛物线y=﹣x2+x+,
令x=0,得y=,即C(0,),D(2,),
∴DH=,
令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
∵AE⊥AC,EH⊥AH,
∴△ACO∽△EAH,
∴=,即=,
解得:EH=,
则DE=2;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
联立得:F (0,﹣),P(2,),
过点M作y轴的平行线交FH于点Q,
设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
∵对称轴为:直线m=<2,开口向下,
∴m=时,△MPF面积有最大值: ;
(3)由(2)可知C(0,),F(0,),P(2,),
∴CF=,CP==,
∵OC=,OA=1,
∴∠OCA=30°,
∵FC=FG,
∴∠OCA=∠FGA=30°,
∴∠CFP=60°,
∴△CFP为等边三角形,边长为,
翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
1)当K F′=KF″时,如图3,
点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
∴OK=3;
2)当F′F″=F′K时,如图4,
∴F′F″=F′K=4,
∵FP的解析式为:y=x﹣,
∴在平移过程中,F′K与x轴的夹角为30°,
∵∠OAF=30°,
∴F′K=F′A
∴AK=4
∴OK=4﹣1或者4+1;
3)当F″F′=F″K时,如图5,
∵在平移过程中,F″F′始终与x轴夹角为60°,
∵∠OAF=30°,
∴∠AF′F″=90°,
∵F″F′=F″K=4,
∴AF″=8,
∴AK=12,
∴OK=1,
综上所述:OK=3,4﹣1,4+1或者1.
点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
20、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【解析】
(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
【详解】
(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
(1)根据题意得:,
解得:7≤x≤,
∵x为整数,
∴7≤x≤2.
∵10.6>0,
∴y随x增大而减小,
∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【点睛】
本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
21、52
【解析】
根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.
【详解】
如图,过点C作CF⊥AB于点F.
设塔高AE=x,
由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,
在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,
则,
在Rt△ABD中,∠ADB=45°,AB=x+56,
则BD=AB=x+56,
∵CF=BD,
∴,
解得:x=52,
答:该铁塔的高AE为52米.
【点睛】
本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.
22、解:(1)该校班级个数为4÷20%=20(个),
只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
该校平均每班留守儿童的人数为:
=4(名),
补图如下:
(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,
有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
则所选两名留守儿童来自同一个班级的概率为:=.
【解析】
(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
23、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
(1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
【详解】
解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
∴,解得,
此抛物线所对应的函数表达式y=-x2+2x+1;
(2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
∴C(0,1).
设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
,解得,
即BC的函数解析式为y=-x+1.
由P在BC上,F在抛物线上,得
P(m,-m+1),F(m,-m2+2m+1).
PF=-m2+2m+1-(-m+1)=-m2+1m.
(1)如图
,
∵此抛物线所对应的函数表达式y=-x2+2x+1,
∴D(1,4).
∵线段BC与抛物线的对称轴交于点E,
当x=1时,y=-x+1=2,
∴E(1,2),
∴DE=4-2=2.
由四边形PEDF为平行四边形,得
PF=DE,即-m2+1m=2,
解得m1=1,m2=2.
当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
当m=2时,四边形PEDF为平行四边形.
考点:二次函数综合题.
24、(1)见解析;(2)1
【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
【详解】
(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
又∵EF⊥AC,∴平行四边形AECF是菱形;
(2)设AF=x.
∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
【点睛】
本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
辽宁省市级名校2021-2022学年中考数学五模试卷含解析: 这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。
2022届安徽省阜阳地区市级名校中考数学五模试卷含解析: 这是一份2022届安徽省阜阳地区市级名校中考数学五模试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中计算正确的是,已知下列命题等内容,欢迎下载使用。
2022届安徽省合肥市市级名校中考二模数学试题含解析: 这是一份2022届安徽省合肥市市级名校中考二模数学试题含解析,共24页。试卷主要包含了分式的值为0,则x的取值为等内容,欢迎下载使用。