【全国市级联盟】福建省泉州市惠安县2022年中考试题猜想数学试卷含解析
展开
这是一份【全国市级联盟】福建省泉州市惠安县2022年中考试题猜想数学试卷含解析,共19页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
2.若关于的一元二次方程的一个根是0,则的值是( )
A.1 B.-1 C.1或-1 D.
3.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是( )
A.m> B.m>且m≠2 C.﹣<m<2 D.<m<2
4.如图所示的几何体的俯视图是( )
A. B. C. D.
5.如图是某几何体的三视图及相关数据,则该几何体的全面积是( )
A.15π B.24π C.20π D.10π
6.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
A.5 B.7 C.8 D.10
7.已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有( )
A.4个 B.5个 C.6个 D.7个
8.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
9.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
10.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.
12.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.
13.如果,那么______.
14.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .
15.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
16.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.
17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
19.(5分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、、.
求此抛物线的解析式.
求此抛物线顶点的坐标和四边形的面积.
20.(8分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.
(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;
(2)函数y=+1的图象与x轴、y轴交点的情况是: ;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 .
21.(10分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.
22.(10分)计算:2cos30°+--()-2
23.(12分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
24.(14分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
(1)求线段DE的长度;
(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
2、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
【点睛】
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
3、D
【解析】
根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>且m≠﹣2,再利用根与系数的关系得到, m﹣2≠0,解得<m<2,即可求出答案.
【详解】
解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,
∴m>且m≠﹣2,
∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,
∴﹣>0,m﹣2≠0,
∴<m<2,
∵m>,
∴<m<2,
故选:D.
【点睛】
本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.
4、B
【解析】
根据俯视图是从上往下看得到的图形解答即可.
【详解】
从上往下看得到的图形是:
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线
5、B
【解析】
解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
6、A
【解析】
解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
7、A
【解析】
依据不等式组至少有两个整数解,即可得到a>5,再根据存在以3,a,7为边的三角形,可得4<a<10,进而得出a的取值范围是5<a<10,即可得到a的整数解有4个.
【详解】
解:解不等式①,可得x<a,
解不等式②,可得x≥4,
∵不等式组至少有两个整数解,
∴a>5,
又∵存在以3,a,7为边的三角形,
∴4<a<10,
∴a的取值范围是5<a<10,
∴a的整数解有4个,
故选:A.
【点睛】
此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
8、C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
9、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
10、D
【解析】
分析:根据相似三角形的性质进行解答即可.
详解:∵在平行四边形ABCD中,
∴AE∥CD,
∴△EAF∽△CDF,
∵
∴
∴
∵AF∥BC,
∴△EAF∽△EBC,
∴
故选D.
点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45°,根据平行四边形的面积即可求解.
【详解】
由七巧板性质可知,BI=IC=CH=HE.
又∵S△BIC=1,∠BIC=90°,
∴BI•IC=1,
∴BI=IC=,
∴BC==1,
∵EF=BC=1,FG=EH=BI=,
∴点G到EF的距离为:,
∴平行四边形EFGH的面积=EF•
=1×=1.
故答案为1
【点睛】
本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.
12、1°
【解析】
根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
【详解】
∵△ABC≌△ADE,
∴∠BAC=∠DAE,AB=AD,
∴∠BAD=∠EAC=40°,
∴∠B=(180°-40°)÷2=1°,
故答案为1.
【点睛】
本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
13、;
【解析】
先对等式进行转换,再求解.
【详解】
∵
∴3x=5x-5y
∴2x=5y
∴
【点睛】
本题考查的是分式,熟练掌握分式是解题的关键.
14、1
【解析】
试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
考点:三角形相似的应用.
15、6.
【解析】
作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
【详解】
如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,
∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.
16、3
【解析】
设过点A(2,0)和点B(0,2)的直线的解析式为:,
则 ,解得: ,
∴直线AB的解析式为:,
∵点C(-1,m)在直线AB上,
∴,即.
故答案为3.
点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
17、或1
【解析】
图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
图2,当∠MB’C=90°,∠A=90°,AB=AC,
∠C=45°,
所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
所以BM=1.
【详解】
请在此输入详解!
三、解答题(共7小题,满分69分)
18、10,1.
【解析】
试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
19、 ;.
【解析】
(1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;
(2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=S△ABC+S△BCD可求得四边形ABDC的面积.
【详解】
由已知得:,,
把与坐标代入得:
,
解得:,,
则解析式为;
∵,
∴抛物线顶点坐标为,
则.
【点睛】
二次函数的综合应用.解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形.
20、(1),1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣+1.
【解析】
(1)根据函数图象的平移规律,可得答案;
(2)根据自变量与函数值的对应关系,可得答案;
(3)根据点的坐标满足函数解析式,可得答案.
【详解】
(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,
故答案为:,1;
(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,
故答案为:与x轴交于(﹣1,0),与y轴没交点;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣+1, 答案不唯一,
故答案为:y=﹣+1.
【点睛】
本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.
21、见解析.
【解析】
由“SAS”可证△ABC≌△DEC,可得BC=CE,即可得结论.
【详解】
证明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°
∴△ABC≌△DEC(SAS)
∴BC=CE,
∵AC=AE+CE
∴AC=AE+BC
【点睛】
本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.
22、5
【解析】
根据实数的计算,先把各数化简,再进行合并即可.
【详解】
原式=
=5
【点睛】
此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.
23、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
24、 (1)2 ;(2) ;(3)见解析.
【解析】
分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
本题解析:(1)对于抛物线y=﹣x2+x+,
令x=0,得y=,即C(0,),D(2,),
∴DH=,
令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
∵AE⊥AC,EH⊥AH,
∴△ACO∽△EAH,
∴=,即=,
解得:EH=,
则DE=2;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
联立得:F (0,﹣),P(2,),
过点M作y轴的平行线交FH于点Q,
设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
∵对称轴为:直线m=<2,开口向下,
∴m=时,△MPF面积有最大值: ;
(3)由(2)可知C(0,),F(0,),P(2,),
∴CF=,CP==,
∵OC=,OA=1,
∴∠OCA=30°,
∵FC=FG,
∴∠OCA=∠FGA=30°,
∴∠CFP=60°,
∴△CFP为等边三角形,边长为,
翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
1)当K F′=KF″时,如图3,
点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
∴OK=3;
2)当F′F″=F′K时,如图4,
∴F′F″=F′K=4,
∵FP的解析式为:y=x﹣,
∴在平移过程中,F′K与x轴的夹角为30°,
∵∠OAF=30°,
∴F′K=F′A
∴AK=4
∴OK=4﹣1或者4+1;
3)当F″F′=F″K时,如图5,
∵在平移过程中,F″F′始终与x轴夹角为60°,
∵∠OAF=30°,
∴∠AF′F″=90°,
∵F″F′=F″K=4,
∴AF″=8,
∴AK=12,
∴OK=1,
综上所述:OK=3,4﹣1,4+1或者1.
点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
相关试卷
这是一份山西省长治市市级名校2021-2022学年中考试题猜想数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,|–|的倒数是,方程的解是等内容,欢迎下载使用。
这是一份福建省泉州市成功中学2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,函数y=中自变量x的取值范围是,6的相反数为等内容,欢迎下载使用。
这是一份2021-2022学年福建省泉州市泉州实验中学中考试题猜想数学试卷含解析,共23页。试卷主要包含了已知抛物线y=ax2﹣等内容,欢迎下载使用。