2021-2022学年安徽省合肥市长丰县中考数学仿真试卷含解析
展开这是一份2021-2022学年安徽省合肥市长丰县中考数学仿真试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,定义运算“※”为,实数4的倒数是,下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列各式正确的是( )
A. B.
C. D.
2.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )
A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
3.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
4.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )
A.中位数不相等,方差不相等
B.平均数相等,方差不相等
C.中位数不相等,平均数相等
D.平均数不相等,方差相等
5.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
7.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是( )
A. B.
C. D.
8.实数4的倒数是( )
A.4 B. C.﹣4 D.﹣
9.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
10.等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△OBC的面积为____.
12.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
13.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.
14.如图,反比例函数(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为 .
15.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.
16.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
17.若关于的一元二次方程有实数根,则的取值范围是________.
三、解答题(共7小题,满分69分)
18.(10分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡
普通白炽灯泡
进价(元)
45
25
标价(元)
60
30
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
19.(5分)如图,∠A=∠B=30°
(1)尺规作图:过点C作CD⊥AC交AB于点D;
(只要求作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:BC2=BD•AB.
20.(8分)先化简,再求值:,其中满足.
21.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.
22.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
23.(12分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
24.(14分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
(2)先化简,再求值:()÷,其中x=﹣1.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
∵,则B错;,则C;,则D错,故选A.
2、C
【解析】
根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
【详解】
∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选:C.
【点睛】
此题考查了实数与数轴,理解绝对值的定义是解题的关键.
3、B
【解析】
由内错角定义选B.
4、D
【解析】
分别利用平均数以及方差和中位数的定义分析,进而求出答案.
【详解】
2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
故中位数不相等,方差相等.
故选:D.
【点睛】
本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
5、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
6、B
【解析】
解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
根据作图过程可知:PB=CP,
∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
∵∠ABC=90°,∴PD∥AB.
∴E为AC的中点,∴EC=EA,∵EB=EC.
∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
∴正确的有①②④.
故选B.
考点:线段垂直平分线的性质.
7、C
【解析】
根据定义运算“※” 为: a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.
【详解】
解:y=2※x=,
当x>0时,图象是y=对称轴右侧的部分;
当x<0时,图象是y=对称轴左侧的部分,
所以C选项是正确的.
【点睛】
本题考查了二次函数的图象,利用定义运算“※”为: a※b=
得出分段函数是解题关键.
8、B
【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
【详解】
解:实数4的倒数是:
1÷4=.
故选:B.
【点睛】
此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
9、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
10、B
【解析】
根据一次函数的定义,可得答案.
【详解】
设等腰三角形的底角为y,顶角为x,由题意,得
x+2y=180,
所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
故选B.
【点睛】
本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、6
【解析】
根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△OBC的面积.
【详解】
设点A的坐标为(a,),点B的坐标为(b,),
∵点C是x轴上一点,且AO=AC,
∴点C的坐标是(2a,0),
设过点O(0,0),A(a, )的直线的解析式为:y=kx,
∴=k⋅a,
解得k=,
又∵点B(b, )在y=x上,
∴=⋅b,解得, =或=− (舍去),
∴S△OBC==6.
故答案为:6.
【点睛】
本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.
12、 (x﹣1)(x﹣2)
【解析】
根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
【详解】
解:已知方程的两根为:x1=1,x2=2,可得:
(x﹣1)(x﹣2)=0,
∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
【点睛】
一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
13、1
【解析】
分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.
详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,
故内部五个小直角三角形的周长为AC+BC+AB=1.
故答案为1.
点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.
14、
【解析】
试题分析:如图,连接OB.
∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=×1=.
∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.
∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中点.
∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.
15、
【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35°.
考点:1.平行线的性质;2.等边三角形的性质.
16、②④
【解析】
根据分式的定义,将每个式子计算后,即可求解.
【详解】
=1不是分式,=,=3不是分式,=故选②④.
【点睛】
本题考查分式的判断,解题的关键是清楚分式的定义.
17、
【解析】
由题意可得,△=9-4m≥0,由此求得m的范围.
【详解】
∵关于x的一元二次方程x2-3x+m=0有实数根,
∴△=9-4m≥0,
求得 m≤.
故答案为:
【点睛】
本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.
三、解答题(共7小题,满分69分)
18、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】
1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
【详解】
(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得
解得
答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.
(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120﹣a)个.根据题意得
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
∵k=10>0,∴W随a的增大而增大,
∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
【点睛】
本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
19、见解析
【解析】
(1)利用过直线上一点作直线的垂线确定D点即可得;
(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
【详解】
(1)如图所示,CD即为所求;
(2)∵CD⊥AC,
∴∠ACD=90°
∵∠A=∠B=30°,
∴∠ACB=120°
∴∠DCB=∠A=30°,
∵∠B=∠B,
∴△CDB∽△ACB,
∴,
∴BC2=BD•AB.
【点睛】
考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
20、,1.
【解析】
原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可.
【详解】
解:原式
∵,
∴,
∴原式
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
21、(1)证明过程见解析;(2)1.
【解析】
试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.
试题解析:(1)连接OD, ∵CD是⊙O切线, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,
∵AB为⊙O的直径, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO,
∵OA=OD, ∴∠ADO=∠A, ∴∠BDC=∠A;
(2)∵CE⊥AE, ∴∠E=∠ADB=90°, ∴DB∥EC, ∴∠DCE=∠BDC, ∵∠BDC=∠A, ∴∠A=∠DCE,
∵∠E=∠E, ∴△AEC∽△CED, ∴, ∴EC2=DE•AE, ∴11=2(2+AD), ∴AD=1.
考点:(1)切线的性质;(2)相似三角形的判定与性质.
22、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
【解析】
(1)参加丙组的人数为21人;
(2)21÷10%=10人,则乙组人数=10-21-11=10人,
如图:
(3)设需从甲组抽调x名同学到丙组,
根据题意得:3(11-x)=21+x
解得x=1.
答:应从甲抽调1名学生到丙组
(1)直接根据条形统计图获得数据;
(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
23、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).
【解析】
(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.
(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:
①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.
(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.
【详解】
解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);
∵OC=1OA,
∴C(0,1);
依题意有:,
解得;
∴y=﹣x2+2x+1.
(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);
设P2(x,y),
∵C(0,1),P(2,1),
∴CP=2,
∵D(1,4),
∴CD=<2,
②由①此时CD⊥PD,
根据垂线段最短可得,PC不可能与CD相等;
②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2
∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2
将y=﹣x2+2x+1代入可得:,
∴ ;
∴P2(,).
综上所述,P(2,1)或(,).
(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);
①若Q是直角顶点,由对称性可直接得Q1(1,0);
②若N是直角顶点,且M、N在x轴上方时;
设Q2(x,0)(x<1),
∴MN=2Q1O2=2(1﹣x),
∵△Q2MN为等腰直角三角形;
∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);
∵x<1,
∴Q2(,0);
由对称性可得Q1(,0);
③若N是直角顶点,且M、N在x轴下方时;
同理设Q4(x,y),(x<1)
∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),
∵y为负,
∴﹣y=2(1﹣x),
∴﹣(﹣x2+2x+1)=2(1﹣x),
∵x<1,
∴x=﹣,
∴Q4(-,0);
由对称性可得Q5(+2,0).
【点睛】
本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.
24、(1) (2)
【解析】
(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
解:(1)原式=﹣+1+2=﹣+1+=﹣;
(2)原式=
=
=
=,
当x=﹣1时,原式==.
【点睛】
本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
相关试卷
这是一份2023年安徽省合肥市长丰县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年安徽省合肥市长丰县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年安徽省合肥市长丰县中考二模数学试卷(含答案解析),共23页。