2021-2022学年安徽省滁州地区重点中学中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列所给函数中,y随x的增大而减小的是( )
A.y=﹣x﹣1 B.y=2x2(x≥0)
C. D.y=x+1
2.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )
A.甲的速度是10km/h B.乙的速度是20km/h
C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
4.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )
A. B. C. D.
5.下列关于统计与概率的知识说法正确的是( )
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
6.如果菱形的一边长是8,那么它的周长是( )
A.16 B.32 C.16 D.32
7.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称 B.关于y轴对称
C.绕原点逆时针旋转 D.绕原点顺时针旋转
8.如果两圆只有两条公切线,那么这两圆的位置关系是( )
A.内切 B.外切 C.相交 D.外离
9.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )
A.12 B.11 C.10 D.9
10.不等式﹣x+1>3的解集是( )
A.x<﹣4 B.x>﹣4 C.x>4 D.x<4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.
12.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
13.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.
14.不等式组的解集是__.
15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.
16.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
三、解答题(共8题,共72分)
17.(8分) ( 1)计算: ﹣4sin31°+(2115﹣π)1﹣(﹣3)2
(2)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.
18.(8分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.
19.(8分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
求证:BG=FG;若AD=DC=2,求AB的长.
20.(8分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9, CE=12, 求BF的长.
21.(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度
非常喜欢
喜欢
一般
不知道
频数
90
b
30
10
频率
a
0.35
0.20
请你根据统计图、表,提供的信息解答下列问题:
(1)该校这次随即抽取了 名学生参加问卷调查:
(2)确定统计表中a、b的值:a= ,b= ;
(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
22.(10分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.
23.(12分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=,求⊙O的半径.
24.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.
(1)求证:AB是☉O的切线;
(2)若∠A=60°,DF=,求☉O的直径BC的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
【详解】
解:A.此函数为一次函数,y随x的增大而减小,正确;
B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
D.此函数为一次函数,y随x的增大而增大,错误.
故选A.
【点睛】
本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
2、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
3、B
【解析】
由图可知,甲用4小时走完全程40km,可得速度为10km/h;
乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
故选B
4、A
【解析】
由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
故选A.
点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
5、B
【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
6、B
【解析】
根据菱形的四边相等,可得周长
【详解】
菱形的四边相等
∴菱形的周长=4×8=32
故选B.
【点睛】
本题考查了菱形的性质,并灵活掌握及运用菱形的性质
7、C
【解析】
分析:根据旋转的定义得到即可.
详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
所以点A绕原点逆时针旋转90°得到点B,
故选C.
点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
8、C
【解析】
两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.
【详解】
根据两圆相交时才有2条公切线.
故选C.
【点睛】
本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.
9、A
【解析】
根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.
【详解】
∵一个正多边形的每个内角为150°,
∴这个正多边形的每个外角=180°﹣150°=30°,
∴这个正多边形的边数==1.
故选:A.
【点睛】
本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.
10、A
【解析】
根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.
【详解】
移项得:−x>3−1,
合并同类项得:−x>2,
系数化为1得:x<-4.
故选A.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、15p
【解析】
试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.
故答案为15π.
考点:圆锥的计算.
12、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
【点睛】
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
13、60.
【解析】
首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
【详解】
设半圆的圆心为O,连接OE,OA,
∵CD=2OC=2BC,
∴OC=BC,
∵∠ACB=90°,即AC⊥OB,
∴OA=BA,
∴∠AOC=∠ABC,
∵∠BAC=30°,
∴∠AOC=∠ABC=60°,
∵AE是切线,
∴∠AEO=90°,
∴∠AEO=∠ACO=90°,
∵在Rt△AOE和Rt△AOC中,
,
∴Rt△AOE≌Rt△AOC(HL),
∴∠AOE=∠AOC=60°,
∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
∴点E所对应的量角器上的刻度数是60°,
故答案为:60.
【点睛】
本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
14、2≤x<1
【解析】
分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.
【详解】
解:,
解①得x<1,
解②得x≥2,
所以不等式组的解集为2≤x<1.
故答案为2≤x<1.
【点睛】
本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
15、1
【解析】
先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.
【详解】
解:∵∠A+∠C=180°,
∴AB∥CD,
∴∠APM=∠CQM=118°,
∴∠CQN=180°-∠CQM=1°,
故答案为:1.
【点睛】
本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
16、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
三、解答题(共8题,共72分)
17、 (1)-7;(2) ,.
【解析】
(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;
(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.
【详解】
(1)原式=3−4×+1−9=−7;
(2)原式=1− ×=1− = =−;
∵|x−2|+(2x−y−3)2=1,
∴,
解得:x=2,y=1,
当x=2,y=1时,原式=−.
故答案为(1)-7;(2)−;−.
【点睛】
本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.
18、(1)90°;(1)证明见解析;(3)1.
【解析】
(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.
【详解】
解:(1)解:∵对角线AC为⊙O的直径,
∴∠ADC=90°,
∴∠EDC=90°;
(1)证明:连接DO,
∵∠EDC=90°,F是EC的中点,
∴DF=FC,
∴∠FDC=∠FCD,
∵OD=OC,
∴∠OCD=∠ODC,
∵∠OCF=90°,
∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切线;
(3)解:如图所示:可得∠ABD=∠ACD,
∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,
∴∠DCA=∠E,
又∵∠ADC=∠CDE=90°,
∴△CDE∽△ADC,
∴,
∴DC1=AD•DE
∵AC=1DE,
∴设DE=x,则AC=1x,
则AC1﹣AD1=AD•DE,
期(1x)1﹣AD1=AD•x,
整理得:AD1+AD•x﹣10x1=0,
解得:AD=4x或﹣4.5x(负数舍去),
则DC=,
故tan∠ABD=tan∠ACD=.
19、(1)证明见解析;(2)AB=
【解析】
(1)证明:∵,DE⊥AC于点F,
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE
∴AB=AF.
连接AG,
∵AG=AG,AB=AF
∴Rt△ABG≌Rt△AFG
∴BG=FG
(2)解:∵AD=DC,DF⊥AC
∴
∴∠E=30°
∴∠FAD=∠E=30°
∴AB=AF=
20、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;
(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.
试题解析:(1)证明:∵,
∴.
∵CD平分,BC=BD,
∴,.
∴.
∴∥.
∴.
∵AB是⊙O的直径,
∴BD是⊙O的切线.
(2)连接AC,
∵AB是⊙O直径,
∴.
∵,
可得.
∴
在Rt△CEB中,∠CEB=90°,由勾股定理得
∴.
∵,∠EFC =∠BFD,
∴△EFC∽△BFD.
∴.
∴.
∴BF=1.
考点:切线的判定,相似三角形,勾股定理
21、(1)200,;(2)a=0.45,b=70;(3)900名.
【解析】
(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
【详解】
解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
(2)“非常喜欢”频数90,a= ;
(3).
故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
【点睛】
此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
22、(1)(2)(-6,0)或(-2,0).
【解析】
分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
23、(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.
【解析】
(1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;
(2)连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴=AD•DE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==2.
∴半径为1.1
24、(1)证明过程见解析;(2)
【解析】
(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.
【详解】
(1)∵CB=CD
∴∠CBD=∠CDB
又∵∠CEB=90°
∴∠CBD+∠BCE=∠CDE+∠DCE
∴∠BCE=∠DCE且∠BCD=2∠ABD
∴∠ABD=∠BCE
∴∠CBD+∠ABD=∠CBD+∠BCE=90°
∴CB⊥AB垂足为B
又∵CB为直径
∴AB是⊙O的切线.
(2)∵∠A=60°,DF=
∴在Rt△AFD中得出AF=1
在Rt△BFD中得出DF=3
∵∠ADF=∠ACB ∠A=∠A
∴△ADF∽△ACB
∴
即
解得:CB=
考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定
潍坊市重点中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份潍坊市重点中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了如图,点A,B在双曲线y=等内容,欢迎下载使用。
2022届安徽省滁州地区重点中学中考数学模试卷含解析: 这是一份2022届安徽省滁州地区重点中学中考数学模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列图形是中心对称图形的是等内容,欢迎下载使用。
2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析: 这是一份2021-2022学年铁岭市重点中学中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,这个数是等内容,欢迎下载使用。