【全国百强校首发】福建省厦门外国语校2022年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A. += B.﹣= C.×=6 D.=4
2.下列由左边到右边的变形,属于因式分解的是( ).
A.(x+1)(x-1)=x2-1
B.x2-2x+1=x(x-2)+1
C.a2-b2=(a+b)(a-b)
D.mx+my+nx+ny=m(x+y)+n(x+y)
3.计算:得( )
A.- B.- C.- D.
4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为( )
A.110° B.115° C.120° D.130°
5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )
A.6 B.7 C.11 D.12
6.一元二次方程(x+2017)2=1的解为( )
A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
7.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )
A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°
C.∠1=30°,∠1=60° D.∠1=∠1=45°
8.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为( )
A.18元 B.36元 C.54元 D.72元
9.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是( )
A. B. C. D.
10.二次函数y=3(x﹣1)2+2,下列说法正确的是( )
A.图象的开口向下
B.图象的顶点坐标是(1,2)
C.当x>1时,y随x的增大而减小
D.图象与y轴的交点坐标为(0,2)
11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A. B. C. D.
12.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
14.因式分解:_________________.
15.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 ▲ .
16.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.
17.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
18.函数中自变量x的取值范围是___________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.
(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
20.(6分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)
21.(6分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.
22.(8分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.
23.(8分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)
24.(10分)观察与思考:阅读下列材料,并解决后面的问题
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.
(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A= ;AC= ;
(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,≈2.449)
25.(10分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒.
(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;
(2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.
(3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.
26.(12分)先化简,再求值:(-)¸,其中=
27.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
【详解】
解:A、与不能合并,所以A选项不正确;
B、-=2−=,所以B选项正确;
C、×=,所以C选项不正确;
D、=÷=2÷=2,所以D选项不正确.
故选B.
【点睛】
此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
2、C
【解析】
因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
【详解】
解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
故选择C.
【点睛】
本题考查了因式分解的定义,牢记定义是解题关键.
3、B
【解析】
同级运算从左向右依次计算,计算过程中注意正负符号的变化.
【详解】
-
故选B.
【点睛】
本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
4、A
【解析】
试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.
解:根据三角形的外角性质,
∴∠1+∠2=∠4=110°,
∵a∥b,
∴∠3=∠4=110°,
故选A.
点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.
5、C
【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
【详解】
∵x+2y=5,
∴2x+4y=10,
则2x+4y+1=10+1=1.
故选C.
【点睛】
此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
6、A
【解析】
利用直接开平方法解方程.
【详解】
(x+2017)2=1
x+2017=±1,
所以x1=-2018,x2=-1.
故选A.
【点睛】
本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
7、D
【解析】
能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.
【详解】
“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.
故选:D.
【点睛】
考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.
8、D
【解析】
设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
【详解】
解:根据题意设y=kπx2,
∵当x=3时,y=18,
∴18=kπ•9,
则k=,
∴y=kπx2=•π•x2=2x2,
当x=6时,y=2×36=72,
故选:D.
【点睛】
本题考查了二次函数的应用,解答时求出函数的解析式是关键.
9、D
【解析】
∵AD//BC,DE//AB,∴四边形ABED是平行四边形,
∴ , ,
∴选项A、C错误,选项D正确,
选项B错误,
故选D.
10、B
【解析】
由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
【详解】
解:A、因为a=3>0,所以开口向上,错误;
B、顶点坐标是(1,2),正确;
C、当x>1时,y随x增大而增大,错误;
D、图象与y轴的交点坐标为(0,5),错误;
故选:B.
【点睛】
考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
11、B
【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1.
∵BF=1FC,BC=AD=3,
∴BF=AH=1,FC=HD=1,
∴AF===,
∵OH∥AE,
∴=,
∴OH=AE=,
∴OF=FH﹣OH=1﹣=,
∵AE∥FO,∴△AME∽△FMO,
∴=,∴AM=AF=,
∵AD∥BF,∴△AND∽△FNB,
∴=,
∴AN=AF=,
∴MN=AN﹣AM=﹣=,故选B.
【点睛】
构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
12、B
【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
【详解】
解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
故选B.
【点睛】
本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
14、
【解析】
提公因式法和应用公式法因式分解.
【详解】
解: .
故答案为:
【点睛】
本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
15、k<且k≠1.
【解析】
根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:
∵有两个不相等的实数根,
∴△=1-4k>1,且k≠1,解得,k<且k≠1.
16、12.
【解析】
设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.
【详解】
设AD=a,则AB=OC=2a,
∵点D在反比例函数y=的图象上,
∴D(a,),
∴OA=,
过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,
∵△OEC的面积为12,OC=2a,
∴EN=,
∴EM=MN-EN=-=;
设ON=x,则NC=BM=2a-x,
∵AB∥OC,
∴△BME∽△ONE,
∴,
即,
解得x=,
∴E(,),
∵点E在在反比例函数y=的图象上,
∴·=k,
解得k=,
∵k>0,
∴k=12.
故答案为:12.
【点睛】
本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.
17、﹣2
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
【详解】
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=1OA,
∴BD=1m,OD=1n.
因为点A在反比例函数y=的图象上,
∴mn=1.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-1n,1m).
∴k=-1n•1m=-4mn=-2.
故答案为-2.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.
18、x≤2
【解析】
试题解析:根据题意得:
解得:.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)50,360;(2) .
【解析】
试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;
(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.
试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)
由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)
(2)树状图:
由树状图可知共有12种结果,抽到1男1女分别为共8种.
∴
考点:1、扇形统计图,2、条形统计图,3、概率
20、 (10-4)米
【解析】
延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.
【详解】
解:如图,延长OC,AB交于点P.
∵∠ABC=120°,
∴∠PBC=60°,
∵∠OCB=∠A=90°,
∴∠P=30°,
∵AD=20米,
∴OA=AD=10米,
∵BC=2米,
∴在Rt△CPB中,PC=BC•tan60°=米,PB=2BC=4米,
∵∠P=∠P,∠PCB=∠A=90°,
∴△PCB∽△PAO,
∴,
∴PA===米,
∴AB=PA﹣PB=()米.
答:路灯的灯柱AB高应该设计为()米.
21、 (1)、y=-+x+4;(2)、不存在,理由见解析.
【解析】
试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
∴不存在满足条件的点F
考点:二次函数的应用
22、8+6.
【解析】
如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
【详解】
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
∴CH=BC=6,BH==6,
在Rt△ACH中,tanA==,
∴AH=8,
∴AC==10,
【点睛】
本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
23、不满足安全要求,理由见解析.
【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
【详解】
解:施工方提供的设计方案不满足安全要求,理由如下:
在Rt△ABC中,AC=15m,∠ABC=45°,
∴BC==15m.
在Rt△EFG中,EG=15m,∠EFG=37°,
∴GF=≈=20m.
∵EG=AC=15m,AC⊥BC,EG⊥BC,
∴EG∥AC,
∴四边形EGCA是矩形,
∴GC=EA=2m,
∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
∴施工方提供的设计方案不满足安全要求.
24、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里.
【解析】
(1)利用题目总结的正弦定理,将有关数据代入求解即可;
(2)在△ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可.
【详解】
(1)由正玄定理得:∠A=60°,AC=20;
故答案为60°,20;
(2)如图:
依题意,得BC=40×0.5=20(海里).
∵CD∥BE,
∴∠DCB+∠CBE=180°.
∵∠DCB=30°,∴∠CBE=150°.
∵∠ABE=75°,∴∠ABC=75°,
∴∠A=45°.
在△ABC中,,
即,
解得AB=10≈24.49(海里).
答:渔政船距海岛A的距离AB约为24.49海里.
【点睛】
本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.
25、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
【解析】
分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;
(2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;
②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
详解:(1)如图1,
∵OA=6,OB=1,四边形OACB为长方形,
∴C(6,1).
设此时直线DP解析式为y=kx+b,
把(0,2),C(6,1)分别代入,得
,解得
则此时直线DP解析式为y=x+2;
(2)①当点P在线段AC上时,OD=2,高为6,S=6;
当点P在线段BC上时,OD=2,高为6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
②设P(m,1),则PB=PB′=m,如图2,
∵OB′=OB=1,OA=6,
∴AB′==8,
∴B′C=1﹣8=2,
∵PC=6﹣m,
∴m2=22+(6﹣m)2,解得m=
则此时点P的坐标是(,1);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图3,
①当BD=BP1=OB﹣OD=1﹣2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP1==2,
∴AP1=1﹣2,即P1(6,1﹣2);
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P3E==2,
∴AP3=AE+EP3=2+2,即P3(6,2+2),
综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.
26、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
27、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
【详解】
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+1;
(2)∵A(﹣1,0),B(0,1),
∴OA=OB=1,
∴△AOB是等腰直角三角形,
∴∠BAO=45°.
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PE越大,△PDE的周长越大.
设直线AB的解析式为y=kx+b,则
,解得,
即直线AB的解析式为y=x+1.
设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
所以当x=﹣时,PE最大,△PDE的周长也最大.
当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
即点P坐标为(﹣,)时,△PDE的周长最大.
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
2022年福建省泉州实验中学十校联考最后数学试题含解析: 这是一份2022年福建省泉州实验中学十校联考最后数学试题含解析,共22页。试卷主要包含了函数y=的自变量x的取值范围是,如图,点A所表示的数的绝对值是,不等式3x<2等内容,欢迎下载使用。
2022年福建省莆田砺志国际校十校联考最后数学试题含解析: 这是一份2022年福建省莆田砺志国际校十校联考最后数学试题含解析,共22页。试卷主要包含了如果,则a的取值范围是,计算,下列各数中,最小的数是,若分式的值为零,则x的值是等内容,欢迎下载使用。
2022届福建省莆田一中十校联考最后数学试题含解析: 这是一份2022届福建省莆田一中十校联考最后数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,估算的值在,四根长度分别为3,4,6,等内容,欢迎下载使用。