|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析01
    2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析02
    2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析

    展开
    这是一份2021-2022学年安庆市重点达标名校中考数学模拟预测题含解析,共22页。试卷主要包含了﹣2×,下列算式中,结果等于x6的是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在中,点D为AC边上一点,则CD的长为( )

    A.1 B. C.2 D.
    2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为(  )

    A.8cm B.4cm C.4cm D.5cm
    3.若a+|a|=0,则等于(  )
    A.2﹣2a B.2a﹣2 C.﹣2 D.2
    4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则(  )

    A.DE=EB B.DE=EB C.DE=DO D.DE=OB
    5.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是
    A. B.
    C. D.
    6.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )

    A. B.
    C. D.
    7.﹣2×(﹣5)的值是(  )
    A.﹣7 B.7 C.﹣10 D.10
    8.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    9.下列算式中,结果等于x6的是(  )
    A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
    10.下列运算正确的是(  )
    A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
    11.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是(  )
    A.8 B.9 C.10 D.11
    12.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:________.
    14.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.

    15.关于x的不等式组的整数解有4个,那么a的取值范围( )
    A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤4
    16.的算术平方根是_____.
    17.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    18.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.

    20.(6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
    21.(6分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.

    22.(8分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AB=BE=2,sin∠ACD= ,求四边形ABCD的面积.

    23.(8分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.

    (1)求证:OE=OF;
    (2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
    24.(10分)如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.

    (1)求证:与相切;
    (2)连接,求的值.
    25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
    26.(12分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.

    27.(12分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
    (1)请判断直线BC与⊙O的位置关系,并说明理由;
    (2)已知AD=5,CD=4,求BC的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
    【详解】
    ∵∠DBC=∠A,∠C=∠C,
    ∴△BCD∽△ACB,


    ∴CD=2.
    故选:C.
    【点睛】
    主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    2、C
    【解析】
    连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
    【详解】
    解:连接OC,如图所示:
    ∵AB是⊙O的直径,弦CD⊥AB,

    ∵OA=OC,
    ∴∠A=∠OCA=22.5°,
    ∵∠COE为△AOC的外角,
    ∴∠COE=45°,
    ∴△COE为等腰直角三角形,

    故选:C.

    【点睛】
    此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
    3、A
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    ∵a+|a|=0,
    ∴|a|=-a,
    则a≤0,
    故原式=2-a-a=2-2a.
    故选A.
    【点睛】
    此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
    4、D
    【解析】
    解:连接EO.

    ∴∠B=∠OEB,
    ∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
    ∴∠B+∠D=3∠D,
    ∴∠D+∠DOE+∠D=3∠D,
    ∴∠DOE=∠D,
    ∴ED=EO=OB,
    故选D.
    5、B
    【解析】
    根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.
    【详解】
    二次函数y=a(x﹣h)2+k(a<0)
    二次函数开口向下.即B成立.
    故答案选:B.
    【点睛】
    本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.
    6、C
    【解析】
    根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
    【详解】
    解:∵DE∥BC,
    ∴=,BD≠BC,
    ∴≠,选项A不正确;
    ∵DE∥BC,EF∥AB,
    ∴=,EF=BD,=,
    ∵≠,
    ∴≠,选项B不正确;
    ∵EF∥AB,
    ∴=,选项C正确;
    ∵DE∥BC,EF∥AB,
    ∴=,=,CE≠AE,
    ∴≠,选项D不正确;
    故选C.
    【点睛】
    本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
    7、D
    【解析】
    根据有理数乘法法则计算.
    【详解】
    ﹣2×(﹣5)=+(2×5)=10.
    故选D.
    【点睛】
    考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0 .
    8、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    9、A
    【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
    B、x2+x2+x2=3x2,故选项B不符合题意;
    C、x2•x3=x5,故选项C不符合题意;
    D、x4+x2,无法计算,故选项D不符合题意.
    故选A.
    10、B
    【解析】
    根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
    【详解】
    A、a3+a3=2a3,故A错误;
    B、a6÷a2=a4,故B正确;
    C、a3•a5=a8,故C错误;
    D、(a3)4=a12,故D错误.
    故选:B.
    【点睛】
    此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
    11、A
    【解析】
    分析:根据多边形的内角和公式及外角的特征计算.
    详解:多边形的外角和是360°,根据题意得:
    110°•(n-2)=3×360°
    解得n=1.
    故选A.
    点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
    12、A
    【解析】
    作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
    解:作AH⊥BC于H,作直径CF,连结BF,如图,

    ∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
    ∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
    ∵AH⊥BC,∴CH=BH,
    ∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
    ∴,
    ∴BC=2BH=2.
    故选A.
    “点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
    【详解】
    解:原式=
    =
    【点睛】
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    14、
    【解析】
    设AC=x,则AB=2x,根据面积公式得S△ABC=2x ,由余弦定理求得 cosC代入化简S△ABC= ,由三角形三边关系求得 ,由二次函数的性质求得S△ABC取得最大值.
    【详解】
    设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,
    ∴S△ABC=2x=2x=
    由三角形三边关系有 ,解得,
    故当时, 取得最大值,
    故答案为: .
    【点睛】
    本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.
    15、C
    【解析】
    分析:先根据一元一次不等式组解出x的取值,再根据不等式组
    的整数解有4个,求出实数a的取值范围.
    详解:
    解不等式①,得
    解不等式②,得
    原不等式组的解集为
    ∵只有4个整数解,
    ∴整数解为:


    故选C.
    点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.
    16、
    【解析】
    ∵=8,()2=8,
    ∴的算术平方根是.
    故答案为:.
    17、2或2.
    【解析】
    本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
    【详解】
    解:

    当点在线段的延长线上时,如图3所示.
    过点作于,
    是正方形的对角线,
    ,

    ,
    在中,由勾股定理,得:
    ,
    在和中,,
    ,



    当点在线段上时,如图4所示.
    过作于.
    是正方形的对角线,




    在中,由勾股定理,得:

    在和中,,
    ,



    故答案为或.
    【点睛】
    本题主要考查了勾股定理和三角形全等的证明.
    18、②③④
    【解析】
    试题解析:根据已知条件不能推出OA=OD,∴①错误;
    ∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
    ∴DE=DF,∠AED=∠AFD=90°,
    在Rt△AED和Rt△AFD中,

    ∴Rt△AED≌Rt△AFD(HL),
    ∴AE=AF,
    ∵AD平分∠BAC,
    ∴AD⊥EF,∴②正确;
    ∵∠BAC=90°,∠AED=∠AFD=90°,
    ∴四边形AEDF是矩形,
    ∵AE=AF,
    ∴四边形AEDF是正方形,∴③正确;
    ∵AE=AF,DE=DF,
    ∴AE2+DF2=AF2+DE2,∴④正确;
    ∴②③④正确,

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、见解析
    【解析】
    易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
    【详解】
    在平行四边形ABCD中,AB∥CD,AB=CD
    ∴∠ABE=∠CDF,
    又AE⊥BD,CF⊥BD
    ∴△ABE≌△CDF(AAS),
    ∴AE=CF
    又∠AEF=∠CFE,EF=FE,
    ∴△AEF≌△CFE(SAS)
    ∴AF=CE.
    【点睛】
    此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
    20、(1)20%;(2)能.
    【解析】
    (1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
    (2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
    【详解】
    (1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
    解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
    答:该企业从2014年到2016年利润的年平均增长率为20%.
    (2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
    所以该企业2017年的利润能超过3.4亿元.
    【点睛】
    此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
    21、原计划每天安装100个座位.
    【解析】
    根据题意先设原计划每天安装x个座位,列出方程再求解.
    【详解】
    解:设原计划每天安装个座位,采用新技术后每天安装个座位,
    由题意得:.
    解得:.
    经检验:是原方程的解.
    答:原计划每天安装100个座位.
    【点睛】
    此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.
    22、(1)证明见解析;(2)S平行四边形ABCD =3 .
    【解析】
    试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;
    (2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.
    试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,
    ∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,
    ∵AB∥CD,∴四边形ABCD是平行四边形;
    (2)∵sin∠ACD=,∴∠ACD=60°,
    ∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,
    ∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,
    ∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE= CD=1,∴DE=CE=,AC=AE+CE=3,
    ∴S平行四边形ABCD =2S△ACD =AC•DE=3.
    23、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
    【解析】
    (1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
    (2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴OA=OC,AB∥CD,OB=OD,
    ∴∠OAE=∠OCF,
    在△OAE和△OCF中,

    ∴△AOE≌△COF(ASA),
    ∴OE=OF;
    (2)∵OE=OF,OB=OD,
    ∴四边形DEBF是平行四边形,
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形DEBF是矩形,
    ∴BD=EF,
    ∴OD=OB=OE=OF=BD,
    ∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
    【点睛】
    本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
    24、(1)见解析;(2)
    【解析】
    (1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值.
    【详解】
    (1)连接,.
    ∵是的直径,弦于点,
    ∴,.
    ∵,
    ∴.
    ∴为等边三角形.
    ∴,∠DAE=∠EAC=30°,
    ∵OA=OC,
    ∴∠OAC=∠OCA=30°,
    ∴∠1=∠DCA-∠OCA=30°,
    ∵,
    ∴∠DCG=∠CDA=∠60°,
    ∴∠OCG=∠DCG+∠1=60°+30°=90°,
    ∴.
    ∴与相切.

    (2)连接EF,作于点.
    设,则,.
    ∵与相切,
    ∴.
    又∵,
    ∴.
    又∵,
    ∴四边形为平行四边形.
    ∵,
    ∴四边形为菱形.
    ∴,.
    由(1)得,
    ∴,.
    ∴.
    ∵在中,,
    ∴.

    【点睛】
    本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.
    25、(1)若某天该商品每件降价3元,当天可获利1692元;
    (2)2x;50﹣x.
    (3)每件商品降价1元时,商场日盈利可达到2000元.
    【解析】
    (1)根据“盈利=单件利润×销售数量”即可得出结论;
    (2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
    (3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
    【详解】
    (1)当天盈利:(50-3)×(30+2×3)=1692(元).
    答:若某天该商品每件降价3元,当天可获利1692元.
    (2)∵每件商品每降价1元,商场平均每天可多售出2件,
    ∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
    故答案为2x;50-x.
    (3)根据题意,得:(50-x)×(30+2x)=2000,
    整理,得:x2-35x+10=0,
    解得:x1=10,x2=1,
    ∵商城要尽快减少库存,
    ∴x=1.
    答:每件商品降价1元时,商场日盈利可达到2000元.
    【点睛】
    考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
    26、解:(1)直线CD和⊙O的位置关系是相切,理由见解析
    (2)BE=1.
    【解析】
    试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;
    (2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.
    试题解析:(1)直线CD和⊙O的位置关系是相切,
    理由是:连接OD,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠DAB+∠DBA=90°,
    ∵∠CDA=∠CBD,
    ∴∠DAB+∠CDA=90°,
    ∵OD=OA,
    ∴∠DAB=∠ADO,
    ∴∠CDA+∠ADO=90°,
    即OD⊥CE,
    ∴直线CD是⊙O的切线,
    即直线CD和⊙O的位置关系是相切;
    (2)∵AC=2,⊙O的半径是3,
    ∴OC=2+3=5,OD=3,
    在Rt△CDO中,由勾股定理得:CD=4,
    ∵CE切⊙O于D,EB切⊙O于B,
    ∴DE=EB,∠CBE=90°,
    设DE=EB=x,
    在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,
    则(4+x)2=x2+(5+3)2,
    解得:x=1,
    即BE=1.

    考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理
    27、(1)BC与相切;理由见解析;
    (2)BC=6
    【解析】
    试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切
    (2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)
    试题解析:(1)BC与相切;
    ∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切
    (2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)
    考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.

    相关试卷

    浙江省杭州北干重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江省杭州北干重点达标名校2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了答题时请按要求用笔,已知二次函数,下列计算正确的是等内容,欢迎下载使用。

    黑龙江省鸡东县重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份黑龙江省鸡东县重点达标名校2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是等内容,欢迎下载使用。

    北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map