终身会员
搜索
    上传资料 赚现金

    2021-2022学年安徽省五河县联考中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2021-2022学年安徽省五河县联考中考数学最后冲刺浓缩精华卷含解析第1页
    2021-2022学年安徽省五河县联考中考数学最后冲刺浓缩精华卷含解析第2页
    2021-2022学年安徽省五河县联考中考数学最后冲刺浓缩精华卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽省五河县联考中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2021-2022学年安徽省五河县联考中考数学最后冲刺浓缩精华卷含解析,共19页。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.实数 的相反数是 ( )
    A.- B. C. D.
    2.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

    A. B. C. D.
    3.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是  

    A. B. C. D.3
    4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
    如图所示,请根据所学知识计算:圆形木材的直径AC是(  )

    A.13寸 B.20寸 C.26寸 D.28寸
    5.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围( )

    A.a<0,b<0,c<0 B.a<0,b>0,c<0
    C.a>0,b>0,c<0 D.a>0,b<0,c<0
    6.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是(  )
    A.待定系数法 B.配方 C.降次 D.消元
    7.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
    阅读时间(小时)
    2
    2.5
    3
    3.5
    4
    学生人数(名)
    1
    2
    8
    6
    3
    则关于这20名学生阅读小时数的说法正确的是( )
    A.众数是8 B.中位数是3
    C.平均数是3 D.方差是0.34
    8.如图是某个几何体的展开图,该几何体是(  )

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    9.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为(  )

    A.8 B.9 C.5+ D.5+
    10.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.
    12.计算:=_______.
    13.如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.

    14.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是(  )
    A. B. C. D.
    15.计算:的结果为_____.
    16.请写出一个 开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?

    18.(8分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
    (1)求证:CD与⊙O相切;
    (2)若BF=24,OE=5,求tan∠ABC的值.

    19.(8分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.

    并整理分析数据如下表:

    平均成绩/环
    中位数/环
    众数/环
    方差


    7
    7
    1.2

    7

    8

    (1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    20.(8分)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.
    21.(8分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
    求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
    22.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0
    (1)求证:方程一定有两个实数根;
    (2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
    23.(12分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.
    24.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
    (1)直接写出甲投放的垃圾恰好是A类的概率;
    (2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据相反数的定义即可判断.
    【详解】
    实数 的相反数是-
    故选A.
    【点睛】
    此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.
    2、B
    【解析】
    解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
    当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    故选B.
    3、B
    【解析】
    如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
    【详解】
    解:如图,AB的中点即数轴的原点O.
    根据数轴可以得到点A表示的数是.
    故选:B.
    【点睛】
    此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
    4、C
    【解析】
    分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.
    详解:设⊙O的半径为r.
    在Rt△ADO中,AD=5,OD=r-1,OA=r,
    则有r2=52+(r-1)2,
    解得r=13,
    ∴⊙O的直径为26寸,
    故选C.
    点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题
    5、D
    【解析】
    试题分析:根据二次函数的图象依次分析各项即可。
    由抛物线开口向上,可得,
    再由对称轴是,可得,
    由图象与y轴的交点再x轴下方,可得,
    故选D.
    考点:本题考查的是二次函数的性质
    点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。
    6、C
    【解析】
    根据一元二次方程的解的定义即可求出答案.
    【详解】
    由题意可知:a2-a-1=0,
    ∴a2-a=1,
    或a2-1=a
    ∴a3-2a+1
    =a3-a-a+1
    =a(a2-1)-(a-1)
    =a2-a+1
    =1+1
    =2
    故选:C.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.
    7、B
    【解析】
    A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.
    【详解】
    解: A、由统计表得:众数为3,不是8,所以此选项不正确;
    B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;
    C、平均数=,所以此选项不正确;
    D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此选项不正确;
    故选B.
    【点睛】
    本题考查方差;加权平均数;中位数;众数.
    8、A
    【解析】
    侧面为长方形,底面为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故本题选择A.
    【点睛】
    会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.
    9、C
    【解析】
    过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
    【详解】

    过点C作CM⊥AB,垂足为M,
    在Rt△AMC中,
    ∵∠A=60°,AC=4,
    ∴AM=2,MC=2,
    ∴BM=AB-AM=3,
    在Rt△BMC中,
    BC===,
    ∵DE是线段AC的垂直平分线,
    ∴AD=DC,
    ∵∠A=60°,
    ∴△ADC等边三角形,
    ∴CD=AD=AC=4,
    ∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
    故答案选C.
    【点睛】
    本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
    10、D
    【解析】
    本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.
    【详解】
    A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;
    B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;
    C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;
    D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.
    故选D.
    【点睛】
    本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2.54×1
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】2540000的小数点向左移动6位得到2.54,
    所以,2540000用科学记数法可表示为:2.54×1,
    故答案为2.54×1.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、3
    【解析】
    先把化成,然后再合并同类二次根式即可得解.
    【详解】
    原式=2.
    故答案为
    【点睛】
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
    13、
    【解析】
    由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC,由平行线的性质和折叠的性质可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的长,即可求△AFC的面积.
    【详解】
    解:四边形ABCD是矩形
    ,,

    折叠



    在中,,


    .
    故答案为:.
    【点睛】
    本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF的长是本题的关键.
    14、A
    【解析】
    该班男生有x人,女生有y人.根据题意得:,
    故选D.
    考点:由实际问题抽象出二元一次方程组.
    15、
    【解析】
    分析:根据二次根式的性质先化简,再合并同类二次根式即可.
    详解:原式=3-5=﹣2.
    点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
    16、(答案不唯一)
    【解析】
    根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可.
    【详解】
    ∵抛物线开口向下,并且与y轴交于点(0,1)
    ∴二次函数的一般表达式中,a<0,c=1,
    ∴二次函数表达式可以为:(答案不唯一).
    【点睛】
    本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.
    【解析】
    (1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.
    (2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;
    (3)根据函数的图象和交点坐标即可求得.
    【详解】
    ⑴把C(6,-1)代入,得.
    则反比例函数的解析式为,
    把代入,得,
    ∴点D的坐标为(-2,3).
    ⑵将C(6,-1)、D(-2,3)代入,得
    ,解得.
    ∴一次函数的解析式为,
    ∴点B的坐标为(0,2),点A的坐标为(4,0).
    ∴,
    在在中,
    ∴.
    ⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值
    【点睛】
    此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.
    18、(1)证明见解析;(2)
    【解析】
    试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
    (2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
    试题解析:
    (1)证明:
    过点O作OG⊥DC,垂足为G.

    ∵AD∥BC,AE⊥BC于E,
    ∴OA⊥AD.
    ∴∠OAD=∠OGD=90°.
    在△ADO和△GDO中

    ∴△ADO≌△GDO.
    ∴OA=OG.
    ∴DC是⊙O的切线.
    (2)如图所示:连接OF.

    ∵OA⊥BC,
    ∴BE=EF= BF=1.
    在Rt△OEF中,OE=5,EF=1,
    ∴OF=,
    ∴AE=OA+OE=13+5=2.
    ∴tan∠ABC=.
    【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
    19、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    【点睛】
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    20、1.
    【解析】
    根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.
    【详解】
    解:原式=1﹣1+3﹣4×=1.
    【点睛】
    本题考查实数的运算及特殊角三角形函数值.
    21、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
    【解析】
    (1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
    (2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
    (3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
    【详解】
    (1)将点E代入直线解析式中,
    0=﹣×4+m,
    解得m=3,
    ∴解析式为y=﹣x+3,
    ∴C(0,3),
    ∵B(3,0),
    则有,
    解得,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线BD的解析式为y=kx+b,代入点B、D,

    解得,
    ∴直线BD的解析式为y=﹣2x+6,
    则点M的坐标为(x,﹣2x+6),
    ∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
    ∴当x=时,S有最大值,最大值为.
    (3)存在,
    如图所示,

    设点P的坐标为(t,0),
    则点G(t,﹣t+3),H(t,﹣t2+2t+3),
    ∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
    CG==t,
    ∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
    而HG∥y轴,
    ∴HG∥CF,HG=HF,CG=CF,
    ∠GHC=∠CHF,
    ∴∠FCH=∠CHG,
    ∴∠FCH=∠FHC,
    ∴∠GCH=∠GHC,
    ∴CG=HG,
    ∴|t2﹣t|=t,
    当t2﹣t=t时,
    解得t1=0(舍),t2=4,
    此时点P(4,0).
    当t2﹣t=﹣t时,
    解得t1=0(舍),t2=,
    此时点P(,0).
    综上,点P的坐标为(4,0)或(,0).
    【点睛】
    此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
    22、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    【解析】
    试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
    (2)先讨论x1,x2的正负,再根据根与系数的关系求解.
    试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
    ∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
    故方程一定有两个实数根;
    (2)①当x1≥0,x2≥0时,即x1=x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    ②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
    ∴x1+x2=2m+1=0,
    解得:m=﹣;
    ③当x1≤0,x2≤0时,即﹣x1=﹣x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    23、 (1)m≥﹣;(2)m的值为2.
    【解析】
    (1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;
    (2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.
    【详解】
    (1)由题意知,(2m+2)2﹣4×1×m2≥1,
    解得:m≥﹣;
    (2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,
    ∵α+β+αβ=1,
    ∴﹣(2m+2)+m2=1,
    解得:m1=﹣1,m1=2,
    由(1)知m≥﹣,
    所以m1=﹣1应舍去,
    m的值为2.
    【点睛】
    本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.
    24、(1)(2).
    【解析】
    (1)根据总共三种,A只有一种可直接求概率;
    (2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
    【详解】
    解: (1)甲投放的垃圾恰好是A类的概率是.
    (2)列出树状图如图所示:

    由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
    所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
    即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.

    相关试卷

    贵州省桐梓县联考2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份贵州省桐梓县联考2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,1﹣的相反数是等内容,欢迎下载使用。

    2021-2022学年安徽省芜湖繁昌县联考中考数学最后冲刺浓缩精华卷含解析:

    这是一份2021-2022学年安徽省芜湖繁昌县联考中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map