终身会员
搜索
    上传资料 赚现金

    2022年广东省东莞中学初中部中考数学二模试卷(含解析)

    立即下载
    加入资料篮
    2022年广东省东莞中学初中部中考数学二模试卷(含解析)第1页
    2022年广东省东莞中学初中部中考数学二模试卷(含解析)第2页
    2022年广东省东莞中学初中部中考数学二模试卷(含解析)第3页
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省东莞中学初中部中考数学二模试卷(含解析)

    展开

    这是一份2022年广东省东莞中学初中部中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。


    2022年广东省东莞中学初中部中考数学二模试卷

     

    题号

    总分

    得分

     

     

     

     

     

     

    一、选择题(本大题共10小题,共30分)

    1. 自贡恐龙博物馆是世界三大恐龙遗址博物馆之一今年“五一黄金周”共接待游客万人次,人数用科学记数法表示为

    A.  B.  C.  D.

    1. 如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是

    A.
    B.
    C.
    D.
     

    1. 如图,在数轴上,点分别表示,且,若,则点表示的数为
       

    A.  B.  C.  D.

    1. 下列运算正确的是

    A.  B.  C.  D.

    1. 如图,点分别在线段上,连接,则的大小为


    A.  B.  C.  D.

    1. 数据的中位数和众数分别是

    A.  B.  C.  D.

    1. 如图,在菱形中,,连接,则的值为


    A.  B.  C.  D.

    1. 九章算术卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的,那么乙也共有钱问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为,则可列方程组为

    A.  B.
    C.  D.

    1. 如图,一根钢管放在形架内,其横截面面如图所示,钢管的半径是,若,则劣弧的长是

    A.
    B.
    C.
    D.

    1. 已知二次函数的图象如图所示,有下列个结论:




      若方程有四个根,则这四个根的和为
      其中正确的结论有

    A.  B.  C.  D.

     

    二、填空题(本大题共7小题,共28分)

    1. 若式子在实数范围内有意义,则应满足的条件是______
    2. 分解因式:______
    3. 正九边形一个内角的度数为______
    4. ,则 ______
    5. 在平面直角坐标系中,若抛物线轴只有一个交点,则 ______
    6. 如图,中,,以点为圆心,长为半径画弧,分别交于点,则图中阴影部分的面积为______



       

     

    1. 如图,在中,的中点,边上的一动点,将沿所在直线翻折得到,则线段长度的最小值是______


     

    三、计算题(本大题共1小题,共6分)

    1. 先化简,再求值:,其中

     

    四、解答题(本大题共7小题,共56分)

    1. 如图,已知

      尺规作图:作的边的垂直平分线,交于点,交于点保留作图痕迹,不写作法
      ,求的长.
    2. 国土资源部提出“保经济增长、保耕地红线”行动,坚持实行最严格的耕地保护制度,某村响应国家号召,年有耕地亩,经过改造后,年有耕地亩.
      求该村耕地两年平均增长率;
      按照中平均增长率,求年该村耕地拥有量.
    3. 岭南四大园林、也可以称为”广东四大园林”或“粤中四大园林”,指:佛山市顺德区的清晖园,佛山市禅城区的梁园,番禺的余荫山房,东莞的可园.我市九年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,根据报名情况绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:

      全班报名参加研学旅游活动的学生共有______人;
      扇形统计图中部分所对应的扇形圆心角是______
      补全条形统计图;
      该班语文、数学两位学科老师也报名参加了本次研学旅游活动,他们随机加入四个小组中,求两位老师在同一个小组的概率.
    4. 如图,矩形的对角线相交于点关于的对称图形为
      求证:四边形是菱形;
      连接,交于点,若,求的值.
    5. 如图,两点在反比例函数的图象上,的延长线交轴于点,且
      若点的坐标是,求直线的解析式;
      的面积.


    1. 如图,的直径,于点上一点,且,延长至点,连接,使,延长交于点,连结
      连结,求证:

      求证:的切线;
      ,求的值,
    2. 如图,抛物线轴交于点,与轴交于点,已知
      的值和直线对应的函数表达式;
      为抛物线上一点,若,求点的坐标;
      为抛物线上一点,若,请直接写出点的坐标.



    答案和解析

     

    1.【答案】

    【解析】解:
    故选:
    科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.
    此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定的值以及的值.
     

    2.【答案】

    【解析】解:从上面看,底层右边是一个小正方形,上层是四个小正方形.
    故选:
    找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
    本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
     

    3.【答案】

    【解析】解:
    ,即互为相反数,




    ,即点表示的数为
    故选:
    根据相反数的性质,由,故AB进而推断出
    本题主要考查相反数的性质,熟练掌握相反数的性质是解题关键.
     

    4.【答案】

    【解析】解:,故此选项不合题意;
    B.,故此选项不合题意;
    C.,故此选项符合题意;
    D.,故此选项不合题意;
    故选:
    直接利用负整数指数幂的性质以及二次根式的加减、积的乘方运算法则、零指数幂的性质分别化简,进而判断得出答案.
    此题主要考查了负整数指数幂的性质以及二次根式的加减、积的乘方运算、零指数幂的性质,正确化简各数是解题关键.
     

    5.【答案】

    【解析】解:




    故选:
    由三角形的内角和定理,可得,所以,由此解答即可.
    本题考查了三角形内角和定理和三角形外角性质,掌握这些知识点是解题的关键.
     

    6.【答案】

    【解析】解:数据从小到大排列为:
    所以这组数据的中位数是,众数是
    故选:
    先把数据从小到大或从大到小排列,再得出中位数和众数即可.
    本题考查了中位数和众数的定义及求法,能熟记中位数和众数的定义是解此题的关键.
     

    7.【答案】

    【解析】解:设交于点

    四边形是菱形,



    故选:
    由菱形的性质可得,由锐角三角函数可求解.
    本题考查了菱形的性质,锐角三角函数,掌握菱形的性质是解题的关键.
     

    8.【答案】

    【解析】解:设甲需持钱,乙持钱
    根据题意,得:
    故选:
    设甲需持钱,乙持钱,根据题意可得,甲的钱乙的钱的一半,乙的钱甲所有钱的,据此列方程组可得.
    本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
     

    9.【答案】

    【解析】解:由题意得:
    相切于点相切于点



    劣弧的长
    故选:
    根据题意可得相切于点相切于点,再利用切线的性质可得,然后利用四边形内角和求出的度数,最后利用弧长公式进行计算即可解答.
    本题考查了切线的性质,弧长的计算,熟练掌握切线的性质是解题的关键.
     

    10.【答案】

    【解析】解:抛物线开口向下,

    抛物线对称轴为直线

    抛物线与轴交点在轴上方,

    错误.
    抛物线与轴有个交点,

    错误.
    时,




    正确.
    时,为函数最大值,



    正确.
    方程的四个根分别为的根,
    抛物线关于直线对称,
    抛物线与直线的交点的横坐标为之和为
    抛物线与直线的交点横坐标为之和为
    方程的四个根的和为错误.
    故选:
    由抛物线开口方向,对称轴位置,抛物线与轴交点位置可判断,由抛物线与轴交点个数可判断,由可判断,由时函数取最大值可判断,由函数与直线及直线的交点横坐标为方程的解及抛物线的对称轴为直线可判断
    本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.
     

    11.【答案】

    【解析】解:若式子在实数范围内有意义,则
    解得:
    故答案为:
    根据二次根式有意义的条件得出,解不等式便可得出答案.
    此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
     

    12.【答案】

    【解析】解:


    故答案为:
    此多项式有公因式,应先提取公因式,再利用完全平方公式继续分解.
    本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
     

    13.【答案】

    【解析】解:该正九边形内角和
    则每个内角的度数
    故答案为:
    先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.
    本题主要考查了多边形的内角和定理:,比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.
     

    14.【答案】

    【解析】解:

    解得:

    故答案为:
    直接利用非负数的性质得出的值,进而得出答案.
    此题主要考查了非负数的性质,正确得出的值是解题关键.
     

    15.【答案】

    【解析】解:由题意得:
    解得
    故答案为
    由题意得:,即可求解.
    本题考查的是抛物线和轴的交点,时,抛物线与轴有个交点,时,抛物线与轴有个交点,时,抛物线与轴没有交点.
     

    16.【答案】

    【解析】解:连接,过点

    中,


    是等边三角形,





    阴影部分的面积
    故答案为:
    根据题意和图形可知阴影部分的面积,利用扇形的面积公式即可求解.
    本题考查扇形面积的计算、含角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.
     

    17.【答案】

    【解析】解:如图所示:以为圆心,的长为半径画弧.连接,交弧于点此时的值最小.
    过点,作,交的延长线于点

    四边形是平行四边形,


    的中点,

    在直角中,由勾股定理得

    在直角中,由勾股定理得

    故答案是:
    根据题意,在的运动过程中在以为圆心、为直径的圆上的弧上运动,当取最小值时,由两点之间线段最短知此时三点共线,得出的位置,进而利用勾股定理求出的长即可.
    此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出点位置是解题关键.
     

    18.【答案】解:原式
    时,原式

    【解析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.
    本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.
     

    19.【答案】解:如图,为所作;

    连接
    的垂直平分线,






    DE的长为

    【解析】利用基本作图作的垂直平分线即可;
    根据线段垂直平分线的性质得到,根据直角三角形的性质即可得到结论.
    本题考查了作图基本作图,熟练掌握基本作图作已知线段的垂直平分线是解决问题的关键.也考查了线段垂直平分线的性质和勾股定理.
     

    20.【答案】解:设该村耕地两年平均增长率为
    依题意得:
    解得:不合题意,舍去
    答:该村耕地两年平均增长率为

    答:年该村拥有耕地亩.

    【解析】设该村耕地两年平均增长率为,利用年该村耕地拥有量年该村耕地拥有量年平均增长率,即可得出关于的一元二次方程,解之取其正值即可得出结论;
    年该村耕地拥有量年该村耕地拥有量年平均增长率,即可求出结论.
    本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
     

    21.【答案】 

    【解析】解:全班报名参加研学旅游活动的学生共有:
    故答案为:

    扇形统计图中部分所对应的扇形圆心角是:
    故答案为:

    景点的人数有:,补全统计图如下:


    根据题意画树状图如下:

    共有种等可能的结果,其中两人恰好选中同一个小组的结果有种,
    两人恰好选中同一个小组的概率为
    根据景点的人数和所占的百分比求出总人数;
    乘以部分所对占的百分比,即可得出部分所对应的扇形圆心角度数;
    用总人数减去其他旅游景点的人数,再补全统计图即可;
    根据题意画树状图,求出所有等可能的结果,再用两人恰好选中同一个小组的结果数除以总的结果数即可.
    本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出,再从中选出符合事件的结果数目,求出概率,也考查了条形统计图.
     

    22.【答案】证明:四边形是矩形,

    关于对称,


    四边形是菱形;

    解:如图,连接并延长交,交

    知:四边形是菱形,








    中,
    由勾股定理得:

    【解析】只要证明四边相等即可证明;
    如图,连接并延长交,交,先证明,得,根据三角形中位线定理计算,可得,最后由三角函数定义可得结论.
    本题考查了矩形的性质,菱形的判定和性质,锐角三角函数,轴对称的性质,勾股定理,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题.
     

    23.【答案】解:,过,则



    的坐标是


    的纵坐标为,代入求得横坐标

    设直线
    ,解得
    直线的解析式为

    两点在反比例函数的图象上,




    的纵坐标为,代入反比例函数中得点的坐标为
    ,则

    【解析】,过,则,根据平行线分线段成比例定理求得,进而即可求得的坐标,然后根据待定系数法即可求得直线的解析式;
    根据已知条件结合反比例函数的几何意义,求出点与点的坐标关系,再根据三角形面积公式求得即可.
    本题主要考查反比例函数的几何意义和平行线分线段成比例,熟练的将解析式,点坐标、线段长进行灵活转换才是解题的关键.
     

    24.【答案】解:证明:因为
    所以
    中,

    所以
    证明:连接

    因为
    ,所以
    因为,所以
    所以
    因为
    所以
    所以,即
    所以
    又点
    所以的切线
    因为直径
    所以
    所以
    因为
    所以
    ,则
    连接,则
    易知,则
    所以
    因为
    所以,解得
    所以
    所以
    所以
    因为
    所以,所以
    因为
    所以

    【解析】可知,而是公共边,结论显然成立。
    连接,只需证明即可。根据三角形外角知识以及圆心角与圆周角关系可知,由可知,注意到,于是,结论得证。
    由于,于是,设,则注意到是直径,连接,则是直角,由相似三角形的判定与性质可知,可得出的表达式表示,再根据求出的值,从而的长度可依次得出,最后利用列出比例关系,算出的值。
     

    25.【答案】解:抛物线经过点

    解得:舍去
    抛物线的解析式为
    ,得

    设直线的函数表达式为

    解得:
    直线的函数表达式为
    ,得
    解得:




    如图,在轴上取点,在轴下方过点轴,使,连接,设交抛物线于点







    ,即
    设直线的解析式为

    解得:
    直线的解析式为

    解得:舍去

    ,过点轴交于点,则
    当点下方时,如图,则



    解得:
    时,
    时,

    当点上方时,如图,则



    解得:

    综上所述,点的坐标为

    【解析】运用待定系数法将点代入抛物线,即可求得的值,得出抛物线解析式可求得点的坐标,再利用待定系数法即可求出直线的解析式;
    如图,在轴上取点,在轴下方过点轴,使,连接,设交抛物线于点,可证明,进而证明,得出,即,运用待定系数法求得直线的解析式为,与抛物线解析式联立即可求得点的坐标;
    ,过点轴交于点,则,当点下方时,如图,则,由,可得,即可求得;当点上方时,如图,则,由,可得,即可求得
    本题属于二次函数综合题,主要考查三角形的面积问题,角度的存在性等,在求解过程中,结合背景图形,作出正确的辅助线是解题的基础.
     

    相关试卷

    2024年广东省东莞中学初中部中考数学一模试卷(含解析):

    这是一份2024年广东省东莞中学初中部中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省东莞中学初中部中考数学三模试卷(含解析):

    这是一份2023年广东省东莞中学初中部中考数学三模试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年广东省东莞中学松山湖学校中考数学二模试卷(含解析):

    这是一份2023年广东省东莞中学松山湖学校中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map