![2022年浙教版数学七年级下册期末押题卷(二)第1页](http://www.enxinlong.com/img-preview/2/3/13277451/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年浙教版数学七年级下册期末押题卷(二)第2页](http://www.enxinlong.com/img-preview/2/3/13277451/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年浙教版数学七年级下册期末押题卷(二)第3页](http://www.enxinlong.com/img-preview/2/3/13277451/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年浙教版七年级数学下册期末押题卷黄金六套
2022年浙教版数学七年级下册期末押题卷(二)
展开这是一份2022年浙教版数学七年级下册期末押题卷(二),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年浙教版数学七年级下册期末押题卷(二)
考试时间:120分钟 满分:120分
姓名:__________ 班级:__________考号:__________
题号 | 一 | 二 | 三 | 总分 |
评分 |
|
|
|
|
一、选择题:
1.要使分式有意义,x必须满足的条件是( )
A.x≠3 B.x≠0 C.x>3 D.x=3
2.如图,三角板的直角顶点落在矩形纸片的一边上.若 ,则 的度数是( )
A. B. C. D.
3.计算2x3•(﹣x2)的结果是( )
A.2x B.﹣2x5 C.2x6 D.x5
4.下面的多项式中,能因式分解的是( )
A. B. C. D.
5.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为( )
A.67×10-6 B.6.7×10-6 C.0.67×10-5 D.6.7×10-5
6.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90-110这一组的频数是( )
A.2 B.4 C.6 D.14
7.已知: 是一个完全平方式,则 的值为( )
A.2 B. C.1 D.1或-3
8.若10y=5,则102﹣2y等于( )
A.75 B.4 C.﹣5或5 D.
9.在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )
A.倍 B.倍 C.2倍 D.3倍
10.在矩形ABCD内,将两张边长分别为a和b( )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为 ,图2中阴影部分的面积为 .当 时, 的值是( )
A. B. C. D.
二、填空题:
11.若a﹣b=1,则代数式2a﹣2b﹣1的值为 .
12.如图,已知AB∥CD,∠1=120°,则∠C= .
13.分解因式: =
14.计算:
15.若 则 的值是
16.已知(x﹣2)x+4=1,则x的值可以是 .
三、解答题:
17.计算下列各题:
(1)(m2n4)×(3m2n)÷(-mn2)2
(2)(3x+2)2-(3x-1)(1+3x)
18.把下列多项式因式分解
(1)6a2+12ab+6b2
(2)2a(x2+4)2-32ax2.
19.若方程组 与 有公共解,求a+b的值
20.解方程或方程组:
(1) ;
(2) .
21.某生物课外活动小组的同学举行植物标本制作比赛,结果统计如下:
人数 | 1 | 2 | 4 | 3 | 2 |
每人所作标本数 | 2 | 4 | 6 | 8 | 10 |
根据表中提供的信息,回答下列问题:
(1)该组共有学生多少人?
(2)制作标本数在6个及以上的人数在全组人数中所占比例?
(3)平均每人制作多少个标本?
(4)补全下面的条形统计图.
22.云南地区地震发生后,市政府筹集了必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节省运费,市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能求出这三种车型分别有多少辆吗?此时的运费又是多少元?
23.某市为创建生态文明城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,有三种施工方案:
方案一:甲队单独完成这项工程,刚好能如期完成;
方案二:乙队单独完成这项工程,要比预定工期多用3天;
方案三:先由甲、乙两队一起合作2天,剩下的工程由乙队单独完成,刚好如期完成。
(1)求工程预定工期的天数
(2)若甲队每施工一天需工程款2万元,乙队每施工一天需工程款1.3万元.为节省工程款,同时又如期完工,请你选择一种方案,并说明理由
24.已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且 ,其中 , , ,点E、F均落在直线MN上.
(1)如图1,当点C与点E重合时,求证: ;聪明的小丽过点C作 ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程.
(2)将三角形DEF沿着NM的方向平移,如图2,求证: ;
(3)将三角形DEF沿着NM的方向平移,使得点E移动到点 ,画出平移后的三角形DEF,并回答问题,若 ,则 .(用含 的代数式表示)
答案解析部分
1.【答案】A
【知识点】分式有意义的条件
【解析】【解答】∵分式有意义,
∴x-3≠0,
x≠3.
故选A.
【分析】根据分式的意义,分母不等于0,就可以求解.本题考查的知识点为:分式有意义,分母不为0,解题时要注意.
2.【答案】C
【知识点】平行线的性质
【解析】【解答】解:如图,由题意知: , ,
,
,
,
,
.
故答案为:C.
【分析】根据题意可知 , ,由平行线的性质可求解 ,利用平角的定义可求解 的度数.
3.【答案】B
【知识点】单项式乘单项式
【解析】【解答】解:原式=﹣2x5.
故答案为:B.
【分析】单项式乘单项式把系数与相同字母分别相乘即可.
4.【答案】B
【知识点】因式分解的定义
【解析】【解答】解:A、C、D都无法进行因式分解,
B中, ,可进行因式分解.
故答案为:B.
【分析】分解因式首选的方法就是提公因式法,其次对于二项式一般采用平方差公式法,对于三项式一般采用完全平方公式法,从而即可对四个选项一一判断得出答案.
5.【答案】D
【知识点】科学记数法—表示绝对值较小的数
【解析】【解答】解:0.000067=6.7×10-5.
故答案为:D.
【分析】绝对值小于1的正数可以用科学记数法的表示,一般形式为a×10-n的形式。其中1≤|a|<10,-n=原数左边第一个不为0的数字前面的0的个数的相反数。
6.【答案】B
【知识点】频数与频率
【解析】【解答】跳绳次数在90~110之间的数据有91,93,100,102四个,所以频数为4.
故选:B.
【分析】根据频数的定义,从数据中数出在90~110这一组的数据个数即可得到答案.
7.【答案】D
【知识点】完全平方式
【解析】【解答】∵ −2(k+1)x+4是完全平方式,
∴
∴−2(k+1)=±4,
∴k1=−3,k2=1.
故答案为:D.
【分析】根据(ab)2=a22ab+b2,完全平方公式展开即是首平方a2,尾平方b2,加上或减去2ab,据此可得-2(k+1)=2·x·2,求出m即得.
8.【答案】B
【知识点】同底数幂的除法
【解析】解:102﹣2y=102÷102y=102÷(10y)2=100÷52=4,
故选:B.
【分析】根据同底数幂的除法,幂的乘方,即可解答.
9.【答案】B
【知识点】三元一次方程组解法及应用
【解析】【解答】解:设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,
由题意得,
解得x=2z,y=z,故==.
故选B.
【分析】设一个苹果的重量为x、一个香蕉的重量为y、一个砝码的重量为z,先用含z的代数式表示x,y,即解关于x,y的方程组,再求即可.
10.【答案】B
【知识点】整式的混合运算
【解析】【解答】解:∵ ,
,
∴
.
故答案为:B.
【分析】利用割补法表示出 和 ,然后作差,利用整式的混合运算法则进行化简即可得出结果.
11.【答案】1
【知识点】代数式求值
【解析】【解答】解:∵a﹣b=1,
∴原式=2(a﹣b)﹣1=2﹣1=1.
故答案为:1.
【分析】原式前两项提取2变形后,将a﹣b=1代入计算即可求出值.
12.【答案】60°
【知识点】平行线的性质;邻补角
【解析】【解答】∵∠1+∠FEB=180°,∠1=120°,
∴∠FEB=180°-∠1=60°,
∵AB//CD,
∴∠C=∠FEB=60°,
故答案为60°.
【分析】利用两直线平行,同位角相等即可求解。
13.【答案】a(b-2)²
【知识点】提公因式法因式分解;因式分解﹣运用公式法
【解析】【解答】=
故答案为=a(b-2)2.
【分析】分解因式,先提取公因式,再运用公式法.
14.【答案】
【知识点】分式的加减法
【解析】【解答】原式=
=
=
=
故答案为: .
【分析】先将分母因式分解,找到最简公分母,通分后计算即可.
15.【答案】82
【知识点】代数式求值;完全平方公式及运用
【解析】【解答】解:∵x+y=7,
∴(x+y)2=49,
即x2+2xy+y2=49,
∵xy=-11,
∴
=49-3×(-11)
=49+33
=82.
故答案为:82
【分析】把x+y=7两边平方后利用完全平方公式展开,然后把xy=-11代入计算整理即可求解.
16.【答案】3或﹣4
【知识点】0指数幂的运算性质;有理数的乘方
【解析】【解答】解:当x=3时,(x﹣2)x+4=15=1,
当x=﹣4时,(x﹣2)x+4=(﹣6)0=1,
故答案为:3或﹣4.
【分析】根据零次幂等于1,1的任何次幂等于1,可得答案.
17.【答案】(1)(m2n4)×(3m2n)÷(-mn2)2
=
= ;
(2)(3x+2)2-(3x-1)(1+3x)
=
= .
【知识点】单项式乘单项式;完全平方公式及运用;平方差公式及应用;积的乘方
【解析】【分析】(1)先计算单项式乘以单项式和积的乘方,再计算单项式除以单项式即可得到答案;(2)先运用完全平方公式和平方差公式将括号展开,再合并同类项即可得到答案.
18.【答案】(1)解:6a2+12ab+6b2=6(a2+2ab+b2)=6(a+b)2
(2)解:2a(x2+4)2-32ax2
=2a[(x2+4)2-16x2]
=2a(x2+4x+4)(x2-4x+4)
=2a(x+2)2(x-2)2.
【知识点】提公因式法因式分解;因式分解﹣运用公式法
【解析】【分析】(1)先提公因式,再运用公式法,即可得到结果; (2)先提公因式,再运用公式法,即可得到结果.
19.【答案】解:因为方程组 与 有公共解
所以方程组化 的解也是方程组 的解.
解方程组 得 .
把 代入方程组 .
解得
a+b=1+(-1)=0
【知识点】解二元一次方程组
【解析】【分析】根据两个方程组有公共解,可解出其中一个方程组,将x、y值代入,求得a、b的值。
20.【答案】(1)解: ,
①②得: ,
解得: ,
把 代入①得: ,
则方程组的解为
(2)解:分式方程整理得: ,
去分母得: ,
去括号得: ,
解得: ,
经检验 是分式方程的解
【知识点】解二元一次方程组;解分式方程
【解析】【分析】(1)观察方程组可知,未知数y的系数的绝对值成2倍的关系且符号相反,于是将方程①×2与方程②相加可消未知数y,得到关于x的一元一次方程,解这个方程可求得x的值,再把x的值代入其中一个方程可求得y的值,然后写出结论即可;
(2)根据解分式方程的步骤“去分母、解整式方程、检验、写结论”即可求解.
21.【答案】(1)解:该组共有学生:1+2+4+3+2=12(人);
(2)解:制作标本数在6个及以上的人数在全组人数中所占比例:
(4+3+2)÷12×100%=75%;
(3)解:(1×2+2×4+4×6+3×8+2×10)÷12=6.5(个);
(4)解:补全的条形统计图如下:
.
【知识点】统计表;条形统计图;加权平均数及其计算
【解析】【分析】(1)把表中的人数加起来即可;
(2)用制作标本数在6个及以上的人数在全组人数中所占比例=该组中制作标本数在6个及以上的人数÷该组的总人数×100%即可算出答案;
(3)由平均每人制作的标本=制作的总标本数 总人数即可算出答案;
(4)由统计表提供的人数直接画出条形统计图即可.
22.【答案】(1)解:设需要甲种车型x辆,一种车型y辆,由题意得:
,
解得: .
答:需要甲种车型8辆,一种车型10辆;
(2)解:设甲车有a辆,乙车有b辆,则丙车有(14−a−b)辆,由题意得:
5a+8b+10(14−a−b)=120,
化简得5a+2b=20,
即a=4−25b,
∵a、b、14−a−b均为正整数,
∴b只能等于5,从而a=2,14−a−b=7,
∴甲车2辆,乙车5辆,丙车7辆,
∴需运费400×2+500×5+600×7=7500(元),
答:甲车2辆,乙车5辆,丙车7辆,需运费7500元。
【知识点】二元一次方程的解;二元一次方程的应用;二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)首先设需要甲种车型x辆,一种车型y辆,由题意得等量关系:由运费8200元;运送物资120吨,根据等量关系列出方程组求解即可。
(2)设甲车有a辆,乙车有b辆,则丙车有(14-a-b)辆,由题意运送物资为120吨,列二元一次方程,再计算出整数解即可。
23.【答案】(1)解:假设工期是x天,则有
解得x=6
经检验,x=6是原方程的解.
(2)解:方案一:6×2=12万元;
方案二:不能如期完成;
方案三:甲乙合作2天,完成工程量2×( )= ,剩下工程乙还需4天完成,
∴剩下工程乙还需 (天),
∴费用为2×(2+1.3)+4×1.3=11.8(万元).
∴选方案三.
【知识点】解分式方程;分式方程的实际应用
【解析】【分析】(1)由方案一可知:甲单独完成的时间=工程预定工期的时间;由方案二可知:乙单独完成的时间=工程预定工期的时间+3;由方案三可知:甲乙效率之和×2+乙的工作效率×(工程预定工期的时间-2)=1,再设未知数,列方程,解方程即可解答。
(2)分别利用(1)结果,可以分别求出甲乙单独完成的时间,可确定出符合如期完工的方案,然后分别求出两种方案的费用,比较大小就可得出判断。
24.【答案】(1)解:过点C作 ,
,
,
,
,
,
,
,
,
;
(2)证明: , ,
又 ,
,
,
,
,
,
;
(3)如图三角形DEF即为所求作三角形.
【知识点】角的运算;平行线的判定与性质
【解析】【解答】解:(3)如图三角形DEF即为所求作三角形.
∵ ,
∴ ,
由(2)得,DE∥AC,
∴∠DEF=∠ECA= ,
∵ ,
∴∠ACB= ,
∴ ,
∴∠A=180°- = .
故答案为为: .
【分析】(1)过点C作 , ,再根据, ,得到 ,进而得出 ,最后证明 ;
(2)先证明 ,再证明 ,得到,问题得证;
(3)根据题意得到 ,由(2)得,∠DEF=∠ECA= ,进而得到 ,根据三角形内角和即可求解。
相关试卷
这是一份2022年浙教版数学八年级下册期末押题卷(二),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年浙教版数学八年级下册期末押题卷(一),共16页。试卷主要包含了仔细选一选,认真填一填,全面答一答等内容,欢迎下载使用。
这是一份2022年浙教版数学七年级下册期末押题卷(六),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。