2023年高考数学(理数)一轮复习课时55《随机事件的概率》达标练习(含详解)
展开2023年高考数学(理数)一轮复习课时55
《随机事件的概率》达标练习
一 、选择题
1.设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案解析】答案为:A
解析:若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1,充分性成立.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件,必要性不成立.故甲是乙的充分不必要条件.
2.一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示“向上的一面出现奇数”,事件B表示“向上的一面出现的数字不超过3”,事件C表示“向上的一面出现的数字不小于4”,则( )
A.A与B是互斥而非对立事件
B.A与B是对立事件
C.B与C是互斥而非对立事件
D.B与C是对立事件
【答案解析】答案为:D
解析:A∩B={出现数字1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为必然事件),故事件B,C是对立事件.故选D.
3.已知随机事件A发生的概率是0.02,若事件A出现了10次,那么进行的试验次数约为( )
A.300 B.400 C.500 D.600
【答案解析】答案为:C;
解析:设共进行了n次试验,则=0.02,解得n=500.故选C.
4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为( )
A.0.95 B.0.97 C.0.92 D.0.08
【答案解析】答案为:C.
解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.
5.甲、乙、丙三人站成一排照相,甲排在左边的概率是( )
A.1 B. C. D.
【答案解析】答案为:D;
解析:甲、乙、丙三人站成一排照相的站法有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种,其中甲排在左边的站法为2种,∴甲排在左边的概率是=.故选D.
6.已知某厂的产品合格率为0.8,现抽出10件产品检查,则下列说法正确的是( )
A.合格产品少于8件
B.合格产品多于8件
C.合格产品正好是8件
D.合格产品可能是8件
【答案解析】答案为:D;
解析:产品的合格率是0.8,说明抽出的10件产品中,合格产品可能是8件,故选D.
7.把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件
B.对立但不互斥事件
C.互斥但不对立事件
D.以上均不对
【答案解析】答案为:C;
解析:事件“甲分得红牌”与“乙分得红牌”是不可能同时发生的两个事件,这两个事件可能恰有一个发生、一个不发生,可能两个都不发生,所以这两个事件互斥但不对立,应选C.
8.对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图,根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )
A.0.09 B.0.20 C.0.25 D.0.45
【答案解析】答案为:D.
解析:利用统计图表可知在区间[25,30)上的频率为1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为0.04×5=0.2,故所求二等品的概率为0.45.]
9.甲、乙、丙三人站成一排照相,甲排在左边的概率是( )
A.1 B. C. D.
【答案解析】答案为:D
解析:甲、乙、丙三人站成一排照相的站法有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种,其中甲排在左边的站法为2种,∴甲排在左边的概率是=.故选D.
10.设条件甲:“事件A与B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案解析】答案为:A.
解析:若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.投掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件.]
11.从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )
A. B. C. D.
【答案解析】答案为:A
解析:从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C=10个,
取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),
共3个,故所求概率P=.故选A.
12.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
【答案解析】答案为:A;
解析:至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.
二 、填空题
13.一根绳子长6米,绳子上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为 .
【答案解析】答案为:.
解析:从5个节点中随机选一个将绳子剪断,有5种剪法,所得的两段绳子长均不小于2米的剪法有3种,所以所得的两段绳子均不小于2米的概率为.
14. “键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有 人.
【答案解析】答案为:6 912.
解析:在随机抽取的50人中,持反对态度的频率为1-=,
则可估计该地区对“键盘侠”持反对态度的有9 600×=6 912(人).
15.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
【答案解析】答案为:.
解析:记两只黄球为黄A与黄B,从而所有的摸球结果为:(白、红),(红、黄A),(红、黄B),(白、黄A),(白、黄B),(黄A、黄B),共6种情况,其中颜色不同的有5种情况,则所求概率P=.
16.某城市的空气质量状况如下表所示:
污染指数T | 30 | 60 | 100 | 110 | 130 | 140 |
概率P |
其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________.
【答案解析】答案为:.
解析:[由题意可知2018年空气质量达到良或优的概率为P=++=.]
(通用版)高考数学(理数)一轮复习考点梳理与过关练习55《正态分布》(含详解): 这是一份(通用版)高考数学(理数)一轮复习考点梳理与过关练习55《正态分布》(含详解),共30页。试卷主要包含了正态曲线,正态分布等内容,欢迎下载使用。
2023年高考数学(理数)一轮复习课时56《古典概率》达标练习(含详解): 这是一份2023年高考数学(理数)一轮复习课时56《古典概率》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时56《古典概率》达标练习含详解doc、2023年高考数学理数一轮复习课时56《古典概率》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
2023年高考数学(理数)一轮复习课时46《双曲线》达标练习(含详解): 这是一份2023年高考数学(理数)一轮复习课时46《双曲线》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时46《双曲线》达标练习含详解doc、2023年高考数学理数一轮复习课时46《双曲线》达标练习教师版doc等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。