2021-2022学年广西来宾市忻城县中考数学模试卷含解析
展开
这是一份2021-2022学年广西来宾市忻城县中考数学模试卷含解析,共19页。
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.122.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )A. B. C. D.3.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )A.350 B.351 C.356 D.3584.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=45.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A.米 B.米C.米 D.米6.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )A.10° B.12.5° C.15° D.20°7.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有( )A.1个 B.3个 C.4个 D.5个8.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A. B. C. D.9.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是( )A. B. C. D.10.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c二、填空题(共7小题,每小题3分,满分21分)11.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.12.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.13.27的立方根为 .14.方程x-1=的解为:______.15.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.16.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______17.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.三、解答题(共7小题,满分69分)18.(10分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?19.(5分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?20.(8分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:B D E A C E D B F C D D D B E C D E E FA F F A D C D B D F C F D E C E E E C E并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间ABCDEF频数34 10 7(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为 人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.21.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.22.(10分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.23.(12分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.24.(14分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四边形BFED是平行四边形,∴BD=EF,∴,解得:DE=10.故选C.2、C【解析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故选C.3、B【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.4、D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.5、D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D6、C【解析】试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.7、D【解析】
根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;令x=3,y>0,∴9a+3b+c>0,故②正确;∵OA=OC<1,∴c>﹣1,故③正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.故选D.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.8、A【解析】
作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.9、D【解析】∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故选D.【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.10、C【解析】
首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵当x=a时,,∴P1的坐标为(a,),当x=2a时,,∴P2的坐标为(2a,),……∴Rt△P1B1P2的面积为,Rt△P2B2P3的面积为,Rt△P3B3P4的面积为,……∴Rt△Pn-1Bn-1Pn的面积为.故答案为:12、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2; 如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3; 综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.13、1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算14、【解析】
两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,
解得:x1=0,x2=1,
经检验,x=0不是原方程的解,x=1是原方程的解
故答案为 .【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.15、四丈五尺【解析】
根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴=,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.16、【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,,故正确;对称轴为,,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,,故正确.故答案为.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.17、3【解析】
在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,=0.3,解得m=3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近. 三、解答题(共7小题,满分69分)18、今年的总收入为220万元,总支出为1万元.【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论.试题解析:设去年的总收入为x万元,总支出为y万元.根据题意,得,解这个方程组,得,∴(1+10%)x=220,(1-20%)y=1.答:今年的总收入为220万元,总支出为1万元.19、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C(6,-1)代入,得. 则反比例函数的解析式为,把代入,得,∴点D的坐标为(-2,3). ⑵将C(6,-1)、D(-2,3)代入,得,解得.∴一次函数的解析式为,∴点B的坐标为(0,2),点A的坐标为(4,0). ∴,在在中,∴. ⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.20、(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4).【解析】
(1)观察统计图即可得解;(2)根据题意作图;(3)①根据两个统计图解答即可;②根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;②200×=35,所以估计九年级200名团员中参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率==.【点睛】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.21、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形【解析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.【详解】(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.【点睛】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.22、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件【解析】试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;(2)把月销售额320件与大部分员工的工资比较即可判断.(1)平均数件,∵最中间的数据为210,∴这组数据的中位数为210件,∵210是这组数据中出现次数最多的数据,∴众数为210件;(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.考点:本题考查的是平均数、众数和中位数点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.23、(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】
(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.24、(1);(2),见解析.【解析】
(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份2021-2022学年广西来宾市忻城县八年级(下)期中数学试卷(Word解析版),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年广西来宾市忻城县重点名校中考数学全真模拟试题含解析,共19页。试卷主要包含了答题时请按要求用笔,计算 的结果为等内容,欢迎下载使用。
这是一份2022年广西来宾市忻城县重点名校中考数学模拟试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,边上的高是,点A关于原点对称的点的坐标是等内容,欢迎下载使用。