|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年广东省湛江市市级名校中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年广东省湛江市市级名校中考数学全真模拟试题含解析01
    2021-2022学年广东省湛江市市级名校中考数学全真模拟试题含解析02
    2021-2022学年广东省湛江市市级名校中考数学全真模拟试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省湛江市市级名校中考数学全真模拟试题含解析

    展开
    这是一份2021-2022学年广东省湛江市市级名校中考数学全真模拟试题含解析,共23页。试卷主要包含了一、单选题,下列事件中必然发生的事件是等内容,欢迎下载使用。

    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(共10小题,每小题3分,共30分)
    1.将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).
    A.B.C.D.
    2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
    A.B.C.D.
    3.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.
    A.6055B.6056C.6057D.6058
    4.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为( )
    A.B.2C.D.
    5.若一次函数的图像过第一、三、四象限,则函数( )
    A.有最大值B.有最大值C.有最小值D.有最小值
    6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
    A.6B.5C.2D.3
    7.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
    A.-4或-14B.-4或14C.4或-14D.4或14
    8.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )
    A.168(1﹣x)2=108B.168(1﹣x2)=108
    C.168(1﹣2x)=108D.168(1+x)2=108
    9.一、单选题
    在反比例函数的图象中,阴影部分的面积不等于4的是( )
    A.B.C.D.
    10.下列事件中必然发生的事件是( )
    A.一个图形平移后所得的图形与原来的图形不全等
    B.不等式的两边同时乘以一个数,结果仍是不等式
    C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
    D.随意翻到一本书的某页,这页的页码一定是偶数
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若a+b=5,ab=3,则a2+b2=_____.
    12.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .
    13.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.
    14.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
    15.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.
    16.一元二次方程x(x﹣2)=x﹣2的根是_____.
    三、解答题(共8题,共72分)
    17.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.
    18.(8分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?
    19.(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
    ()若商场预计进货款为元,则这两种台灯各购进多少盏?
    ()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
    20.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
    求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
    21.(8分)问题提出
    (1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB ∠ACB(填“>”“<”“=”);
    问题探究
    (2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
    问题解决
    (3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.
    22.(10分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.
    (1)求这条抛物线的表达式和顶点P的坐标;
    (2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;
    (3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.
    23.(12分)如图所示,内接于圆O,于D;
    (1)如图1,当AB为直径,求证:;
    (2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;
    (3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.
    24.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP=AD. 求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ=BC.已知 AD=1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM=CN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.
    【详解】
    如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.
    ∵直尺的两边互相平行,∴∠2=∠1=148°.
    故选D.
    【点睛】
    本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
    2、B
    【解析】
    由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
    故选B.
    3、D
    【解析】
    设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
    【详解】
    设第n个图形有an个〇(n为正整数),
    观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
    ∴an=1+3n(n为正整数),
    ∴a2019=1+3×2019=1.
    故选:D.
    【点睛】
    此题考查规律型:图形的变化,解题关键在于找到规律
    4、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,
    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    5、B
    【解析】
    解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,
    ∴m+1>0,m<0,即-1<m<0,
    ∴函数有最大值,
    ∴最大值为,
    故选B.
    6、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    【点睛】
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    7、D
    【解析】
    根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
    【详解】
    ∵一条抛物线的函数表达式为y=x2+6x+m,
    ∴这条抛物线的顶点为(-3,m-9),
    ∴关于x轴对称的抛物线的顶点(-3,9-m),
    ∵它们的顶点相距10个单位长度.
    ∴|m-9-(9-m)|=10,
    ∴2m-18=±10,
    当2m-18=10时,m=1,
    当2m-18=-10时,m=4,
    ∴m的值是4或1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
    8、A
    【解析】
    设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
    【详解】
    设每次降价的百分率为x,
    根据题意得:168(1-x)2=1.
    故选A.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
    9、B
    【解析】
    根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.
    【详解】
    解:A、图形面积为|k|=1;
    B、阴影是梯形,面积为6;
    C、D面积均为两个三角形面积之和,为2×(|k|)=1.
    故选B.
    【点睛】
    主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
    10、C
    【解析】
    直接利用随机事件、必然事件、不可能事件分别分析得出答案.
    【详解】
    A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;
    B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;
    C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;
    D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.
    解:∵a+b=5,
    ∴a2+2ab+b2=25,
    ∵ab=3,
    ∴a2+b2=1.
    故答案为1.
    考点:完全平方公式.
    12、1
    【解析】
    试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
    考点:三角形相似的应用.
    13、4
    【解析】
    连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.
    【详解】
    解:连接OP、OB,
    ∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,
    图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,
    又∵点P是半圆弧AC的中点,OA=OC,
    ∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,
    ∴两部分面积之差的绝对值是
    点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.
    14、 (-5,4)
    【解析】
    试题解析:由于图形平移过程中,对应点的平移规律相同,
    由点A到点A'可知,点的横坐标减6,纵坐标加3,
    故点B'的坐标为 即
    故答案为:
    15、k<2且k≠1
    【解析】
    试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,
    ∴k-1≠0且△=(-2)2-4(k-1)>0,
    解得:k<2且k≠1.
    考点:1.根的判别式;2.一元二次方程的定义.
    16、1或1
    【解析】
    移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案.
    【详解】
    x(x﹣1)=x﹣1,
    x(x﹣1)﹣(x﹣1)=0,
    (x﹣1)(x﹣1)=0,
    x﹣1=0,x﹣1=0,
    x1=1,x1=1,
    故答案为:1或1.
    【点睛】
    本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.
    三、解答题(共8题,共72分)
    17、m的值是12.1.
    【解析】
    根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值
    【详解】
    由题意可得,
    1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)
    解得,m1=0(舍去),m2=12.1,
    即m的值是12.1.
    【点睛】
    本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.
    18、男生有12人,女生有21人.
    【解析】
    设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.
    【详解】
    设该兴趣小组男生有x人,女生有y人,
    依题意得:,
    解得:.
    答:该兴趣小组男生有12人,女生有21人.
    【点睛】
    本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.
    19、(1)购进型台灯盏,型台灯25盏;
    (2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
    【解析】
    试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.
    试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
    根据题意得,30x+50(100﹣x)=3500,
    解得x=75,
    所以,100﹣75=25,
    答:应购进A型台灯75盏,B型台灯25盏;
    (2)设商场销售完这批台灯可获利y元,
    则y=(45﹣30)x+(70﹣50)(100﹣x),
    =15x+2000﹣20x,
    =﹣5x+2000,
    ∵B型台灯的进货数量不超过A型台灯数量的3倍,
    ∴100﹣x≤3x,
    ∴x≥25,
    ∵k=﹣5<0,
    ∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
    答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    考点:1.一元一次方程的应用;2.一次函数的应用.
    20、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
    【解析】
    (1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
    【详解】
    (1)如图,过点P作PE⊥MN,垂足为E,
    由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
    ∵PE=30海里,∴AP=60海里,
    ∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
    ∴PE=EB=30海里,
    在Rt△PEB中,BP==30≈42海里,
    故AP=60海里,BP=42(海里);

    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
    根据题意,得,
    解得x=20,
    经检验,x=20是原方程的解,
    甲船的速度为1.2x=1.2×20=24(海里/时).,
    答:甲船的速度是24海里/时,乙船的速度是20海里/时.
    【点睛】
    本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
    21、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
    【解析】
    (1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
    (2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
    (3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
    【详解】
    解:(1)∠AEB>∠ACB,理由如下:
    如图1,过点E作EF⊥AB于点F,
    ∵在矩形ABCD中,AB=2AD,E为CD中点,
    ∴四边形ADEF是正方形,
    ∴∠AEF=45°,
    同理,∠BEF=45°,
    ∴∠AEB=90°.
    而在直角△ABC中,∠ABC=90°,
    ∴∠ACB<90°,
    ∴∠AEB>∠ACB.
    故答案为:>;
    (2)当点P位于CD的中点时,∠APB最大,理由如下:
    假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,
    在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
    ∵∠AFB是△EFB的外角,
    ∴∠AFB>∠AEB,
    ∵∠AFB=∠APB,
    ∴∠APB>∠AEB,
    故点P位于CD的中点时,∠APB最大:
    (3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,
    以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
    由题意知DP=OQ=,
    ∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
    BD=11.6米, AB=3米,CD=EF=1.6米,
    ∴OA=11.6+3﹣1.6=13米,
    ∴DP=米,
    即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
    【点睛】
    本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
    22、(1)(1,4)(2)(0,)或(0,-1)
    【解析】
    试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;
    (2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可 ;
    (3)分情况进行讨论即可得.
    试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),∴OC=3,
    ∵OA=OC,∴OA=3,∴A(3,0),
    ∵A、B关于x=1对称,∴B(-1,0),
    ∵A、B在抛物线y=ax2+bx+3上,
    ∴ ,∴ ,
    ∴抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,
    ∴顶点P(1,4);
    (2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,
    ∵OC//PM,∴∠PMC=∠MCO,
    ∴tan∠PMC=tan∠MCO= = ;
    (3)Q在C点的下方,∠BCQ=∠CMP,
    CM=,PM=4,BC=,
    ∴或 ,
    ∴CQ=或4,
    ∴Q1(0,),Q2(0,-1).
    23、(1)见解析;(2)成立;(3)
    【解析】
    (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;
    (2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;
    (3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.
    【详解】
    (1)证明:∵AB为直径,
    ∴,
    ∵于D,
    ∴,
    ∴,,
    ∴;
    (2)成立,
    证明:连接OC,
    由圆周角定理得:,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    (3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,
    ∵,,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∵根据圆周角定理得:,
    ∴,
    ∴由三角形内角和定理得:,
    ∴,
    ∴,
    同理,
    ∵,
    ∴,
    在AD上取,延长CG交AK于M,则,

    ∴,
    ∴,
    延长KO交⊙O于N,连接CN、AN,
    则,
    ∴,
    ∵,
    ∴,
    ∴四边形CGAN是平行四边形,
    ∴,
    作于T,
    则T为CK的中点,
    ∵O为KN的中点,
    ∴,
    ∵,,
    ∴由勾股定理得:,
    ∴,
    作直径HS,连接KS,
    ∵,,
    ∴由勾股定理得:,
    ∴,
    ∴,
    设,,
    ∴,,
    ∵,
    ∴,
    解得:,
    ∴,
    ∴.
    【点睛】
    本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.
    24、(1)证明见解析(2) (3)
    【解析】
    (1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;
    (2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;
    (3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.
    【详解】
    (1)在图1中,设AD=BC=a,则有AB=CD=a,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∵PA=AD=BC=a,
    ∴PD==a,
    ∵AB=a,
    ∴PD=AB;
    (2)如图,作点P关于BC的对称点P′,
    连接DP′交BC于点E,此时△PDE的周长最小,
    设AD=PA=BC=a,则有AB=CD=a,
    ∵BP=AB-PA,
    ∴BP′=BP=a-a,
    ∵BP′∥CD,
    ∴ ;
    (3)GH=,理由为:
    由(2)可知BF=BP=AB-AP,
    ∵AP=AD,
    ∴BF=AB-AD,
    ∵BQ=BC,
    ∴AQ=AB-BQ=AB-BC,
    ∵BC=AD,
    ∴AQ=AB-AD,
    ∴BF=AQ,
    ∴QF=BQ+BF=BQ+AQ=AB,
    ∵AB=CD,
    ∴QF=CD,
    ∵QM=CN,
    ∴QF-QM=CD-CN,即MF=DN,
    ∵MF∥DN,
    ∴∠NFH=∠NDH,
    在△MFH和△NDH中,

    ∴△MFH≌△NDH(AAS),
    ∴FH=DH,
    ∵G为CF的中点,
    ∴GH是△CFD的中位线,
    ∴GH=CD=×2=.
    【点睛】
    此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.
    相关试卷

    北京首师附大兴北校区市级名校2021-2022学年中考数学全真模拟试题含解析: 这是一份北京首师附大兴北校区市级名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份北京丰台市级名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了按一定规律排列的一列数依次为,估计﹣1的值在,下列各数中,比﹣1大1的是等内容,欢迎下载使用。

    2021-2022学年湖北省竹溪县市级名校中考数学全真模拟试卷含解析: 这是一份2021-2022学年湖北省竹溪县市级名校中考数学全真模拟试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,若,,则的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map