![2021-2022学年合肥市45中中考数学全真模拟试卷含解析第1页](http://www.enxinlong.com/img-preview/2/3/13284981/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年合肥市45中中考数学全真模拟试卷含解析第2页](http://www.enxinlong.com/img-preview/2/3/13284981/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年合肥市45中中考数学全真模拟试卷含解析第3页](http://www.enxinlong.com/img-preview/2/3/13284981/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年合肥市45中中考数学全真模拟试卷含解析
展开
这是一份2021-2022学年合肥市45中中考数学全真模拟试卷含解析,共17页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )A.62° B.56° C.60° D.28°2.的相反数是 A.4 B. C. D.3.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°4.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有( )A.1个 B.2个 C.3个 D.4个5.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( ) A.16cm B.18cm C.20cm D.21cm6.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是( )A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10107.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )A.30° B.35° C.40° D.50°8.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )A.23° B.46° C.67° D.78°9.下列运算中,正确的是 ( )A.x2+5x2=6x4 B.x3 C. D.10.一元二次方程x2+x﹣2=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根二、填空题(共7小题,每小题3分,满分21分)11.如图,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2 ,若,用、表示=_____.12.计算:()0﹣=_____.13.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.14.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.15.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .16.不等式≥-1的正整数解为________________.17.若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|++3|a﹣b|=_____.三、解答题(共7小题,满分69分)18.(10分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).19.(5分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.20.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件) 销售玩具获得利润w(元) (2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?21.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)22.(10分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)23.(12分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.24.(14分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A2、A【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.3、D【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.【详解】解:四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,,,四边形是平行四边形(对边相互平行的四边形是平行四边形);过点分别作,边上的高为,.则(两纸条相同,纸条宽度相同);平行四边形中,,即,,即.故正确;平行四边形为菱形(邻边相等的平行四边形是菱形).,(菱形的对角相等),故正确;,(平行四边形的对边相等),故正确;如果四边形是矩形时,该等式成立.故不一定正确.故选:.【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.4、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.5、C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.6、B【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为: 29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键8、B【解析】
根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.【详解】根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.故选B.【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.9、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.10、A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】
过点A作AE⊥DC,利用向量知识解题.【详解】解:过点A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四边形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案为.【点睛】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.12、-1【解析】
本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:()0﹣=1-2=﹣1.【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.13、140° 【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,∴EF是△ABD的中位线,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.14、2或2.【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2. 故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.15、0或1【解析】分析:需要分类讨论:①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1是二次函数,根据题意得:△=4﹣4m=0,解得:m=1。∴当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。16、1, 2, 1.【解析】
去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案.【详解】,
∴1-x≥-2,
∴-x≥-1,
∴x≤1,
∴不等式的正整数解是1,2,1,
故答案为:1,2,1.【点睛】本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.17、﹣5a+4b﹣3c.【解析】
直接利用数轴结合二次根式、绝对值的性质化简得出答案.【详解】由数轴可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案为-5a+4b-3c.【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键. 三、解答题(共7小题,满分69分)18、简答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的长约为635m.【解析】试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m" ∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO 中,OA==1500×=500m在Rt△CBO 中,OB=1500×tan45°=1500m∴AB=1500-500≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.19、(1);(2).【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.20、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为: 1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46 .w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.21、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22、潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD= = = 在Rt△BCD中,BD=CD•tan68°,∴325+x= •tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频23、(1)相切;(2).【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=.考点:直线与圆的位置关系;扇形面积的计算.24、(1);(2)点P的坐标是(0,4)或(0,-4).【解析】
(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2.将y=2代入3得:x=2,∴M(2,2).把M的坐标代入得:k=4,∴反比例函数的解析式是;(2).∵△OPM的面积与四边形BMON的面积相等,∴.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).
相关试卷
这是一份山东蒙阴县2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了计算的结果是等内容,欢迎下载使用。
这是一份东王营中学2021-2022学年中考数学全真模拟试卷含解析,共20页。试卷主要包含了关于x的正比例函数,y=,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年河北宇华教育集团中考数学全真模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的主视图是,下列四个命题,正确的有个,计算6m6÷等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)