|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年贵州省清镇市卫城中学中考数学押题卷含解析
    立即下载
    加入资料篮
    2021-2022学年贵州省清镇市卫城中学中考数学押题卷含解析01
    2021-2022学年贵州省清镇市卫城中学中考数学押题卷含解析02
    2021-2022学年贵州省清镇市卫城中学中考数学押题卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年贵州省清镇市卫城中学中考数学押题卷含解析

    展开
    这是一份2021-2022学年贵州省清镇市卫城中学中考数学押题卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列四个多项式,能因式分解的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为(  )

    A.8cm B.4cm C.4cm D.5cm
    2.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”(  )

    A.3步 B.5步 C.6步 D.8步
    3.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为(  )

    A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
    4.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )

    A.1个 B.2个 C.3个 D.4个
    6.对于非零的两个实数、,规定,若,则的值为( )
    A. B. C. D.
    7.下列四个多项式,能因式分解的是(  )
    A.a-1 B.a2+1
    C.x2-4y D.x2-6x+9
    8.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
    A. B. C. D.
    9.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是  
    A. B. C. D.
    10.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_____.

    12.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.

    13.将绕点逆时针旋转到使、、在同一直线上,若,,,则图中阴影部分面积为________.

    14.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_____.
    15.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是______.
    16.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.
    求证:△ABC∽△EBD.

    18.(8分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    19.(8分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
    销售时段
    销售数量
    销售收入
    种型号
    种型号
    第一周
    3台
    4台
    1200元
    第二周
    5台
    6台
    1900元
    (进价、售价均保持不变,利润=销售收入—进货成本)
    (1)求、两种型号的电器的销售单价;
    (2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
    (3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
    20.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.

    21.(8分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.

    (1)求△ABC的面积;
    (2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
    (3)如果△APD是直角三角形,求PB的长.
    22.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.

    23.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.

    24.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
    【详解】
    解:连接OC,如图所示:
    ∵AB是⊙O的直径,弦CD⊥AB,

    ∵OA=OC,
    ∴∠A=∠OCA=22.5°,
    ∵∠COE为△AOC的外角,
    ∴∠COE=45°,
    ∴△COE为等腰直角三角形,

    故选:C.

    【点睛】
    此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
    2、C
    【解析】
    试题解析:根据勾股定理得:斜边为
    则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,
    故选C
    3、B
    【解析】
    令x=0,y=6,∴B(0,6),
    ∵等腰△OBC,∴点C在线段OB的垂直平分线上,
    ∴设C(a,3),则C '(a-5,3),
    ∴3=3(a-5)+6,解得a=4,
    ∴C(4,3).
    故选B.
    点睛:掌握等腰三角形的性质、函数图像的平移.
    4、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    5、B
    【解析】
    解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
    故选B.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
    6、D
    【解析】
    试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
    考点:1.新运算;2.分式方程.
    7、D
    【解析】
    试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
    试题解析:x2-6x+9=(x-3)2.
    故选D.
    考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
    8、B
    【解析】
    由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
    故选B.
    9、B
    【解析】
    解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
    点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
    10、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据“A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等”可列方程.
    【详解】
    设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,
    根据题意可得,
    故答案为.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.
    12、1:1.
    【解析】
    试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
    考点:相似三角形的性质.
    13、
    【解析】
    分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.
    详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,
    ∴BC=1cm,AC=1cm,∠A′BA=110°,∠CBC′=110°,
    ∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=×(41-11)=4πcm1.
    故答案为4π.
    点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.
    14、(,)或(﹣,﹣).
    【解析】
    分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得.
    【详解】
    如图,

    ①当点A、B、C的对应点在第一象限时,
    由位似比为1:2知点A′(0,)、B′(,0)、C′(,),
    ∴该正方形的中心点的P的坐标为(,);
    ②当点A、B、C的对应点在第三象限时,
    由位似比为1:2知点A″(0,-)、B″(-,0)、C″(-,-),
    ∴此时新正方形的中心点Q的坐标为(-,-),
    故答案为(,)或(-,-).
    【点睛】
    本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质.
    15、(3,0)
    【解析】
    把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.
    【详解】
    把点(1,0)代入抛物线y=x2-4x+中,得m=6,
    所以,原方程为y=x2-4x+3,
    令y=0,解方程x2-4x+3=0,得x1=1,x2=3
    ∴抛物线与x轴的另一个交点的坐标是(3,0).
    故答案为(3,0).
    【点睛】
    本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.
    16、(y﹣1)1(x﹣1)1.
    【解析】
    解:令x+y=a,xy=b,
    则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)
    =(b﹣1)1﹣(a﹣1b)(1﹣a)
    =b1﹣1b+1+a1﹣1a﹣1ab+4b
    =(a1﹣1ab+b1)+1b﹣1a+1
    =(b﹣a)1+1(b﹣a)+1
    =(b﹣a+1)1;
    即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.
    故答案为(y﹣1)1(x﹣1)1.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (1)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.

    三、解答题(共8题,共72分)
    17、证明见解析
    【解析】
    试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.
    试题解析:
    解:∵ED⊥AB,
    ∴∠EDB=90°.
    ∵∠C=90°,
    ∴∠EDB=∠C.
    ∵∠B=∠B,
    ∴∽.
    点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.
    18、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    19、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.
    【解析】
    (1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;
    (2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;
    (3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.
    【详解】
    解:(1)设A型电器销售单价为x元,B型电器销售单价y元,
    则 ,
    解得:,
    答:A型电器销售单价为200元,B型电器销售单价150元;
    (2)设A型电器采购a台,
    则160a+120(50−a)≤7500,
    解得:a≤,
    则最多能采购37台;
    (3)设A型电器采购a台,
    依题意,得:(200−160)a+(150−120)(50−a)>1850,
    解得:a>35,
    则35<a≤,
    ∵a是正整数,
    ∴a=36或37,
    方案一:采购A型36台B型14台;
    方案二:采购A型37台B型13台.
    【点睛】
    本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
    20、(1)y=60x;(2)300
    【解析】
    (1)由题图可知,甲组的y是x的正比例函数.
    设甲组加工的零件数量y与时间x的函数关系式为y=kx.
    根据题意,得6k=360,
    解得k=60.
    所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
    (2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
    所以,解得a=300.
    21、(1)12(2)y=(0<x<5)(3)或
    【解析】
    试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
    (2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
    (3)分情况进行讨论即可得.
    试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
    ∵cosB=,AB=5,∴BH=4,∴AH=3,
    ∵AB=AC,∴BC=2BH=8,
    ∴S△ABC=×8×3=12

    (2)∵PB=PD,∴∠B=∠PDB,
    ∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
    ∴△BPD∽△BAC,
    ∴ ,
    即,
    解得=,
    ∴ ,
    ∴ ,
    解得y=(0<x<5);
    (3)∠APD<90°,
    过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
    ①当∠ADP=90°时,
    cos∠APD=cos∠CAE=,
    即 ,
    解得x=;
    ②当∠PAD=90°时,

    解得x=,
    综上所述,PB=或.
    【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
    22、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.

    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    23、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
    【解析】
    (1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
    (2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
    【详解】
    (1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
    ∴﹣a+3=2,b=﹣×4+3,
    ∴a=2,b=1,
    ∴点A的坐标为(2,2),点B的坐标为(4,1),
    又∵点A(2,2)在反比例函数y=的图象上,
    ∴k=2×2=4,
    ∴反比例函数的表达式为y=(x>0);
    (2)延长CA交y轴于点E,延长CB交x轴于点F,

    ∵AC∥x轴,BC∥y轴,
    则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
    ∴四边形OECF为矩形,且CE=4,CF=2,
    ∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
    =2×4﹣×2×2﹣×4×1
    =4,
    设点P的坐标为(0,m),
    则S△OAP=×2•|m|=4,
    ∴m=±4,
    ∴点P的坐标为(0,4)或(0,﹣4).
    【点睛】
    此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
    24、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.

    相关试卷

    贵州省清镇市卫城中学2022年中考三模数学试题含解析: 这是一份贵州省清镇市卫城中学2022年中考三模数学试题含解析,共21页。试卷主要包含了实数的相反数是等内容,欢迎下载使用。

    2022届宁夏中学卫市宣和中学中考数学押题试卷含解析: 这是一份2022届宁夏中学卫市宣和中学中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是.,若,,则的值是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析: 这是一份2021-2022学年弥勒市朋普中学中考押题数学预测卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,如果,下列计算正确的是,运用图形变化的方法研究下列问题,在中,,,下列结论中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map