2021-2022学年黑龙江齐齐哈尔市建华区中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是( )
A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2
2.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B. C. D.
3.函数的自变量x的取值范围是( )
A. B. C. D.
4.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )
A. B. C. D.
5.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为( )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
6.下列几何体中,俯视图为三角形的是( )
A. B. C. D.
7.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
A.(5,5) B.(5,4) C.(6,4) D.(6,5)
8.如图所示的几何体,它的左视图与俯视图都正确的是( )
A. B. C. D.
9.下列各数中,最小的数是( )
A.0 B. C. D.
10.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
11.已知方程的两个解分别为、,则的值为()
A. B. C.7 D.3
12.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.边长为6的正六边形外接圆半径是_____.
14.如图,反比例函数(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为 .
15.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.
16.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
17.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是 .
18.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
表1:甲调查九年级30位同学植树情况
每人植树棵数
7
8
9
10
人数
3
6
15
6
表2:乙调查三个年级各10位同学植树情况
每人植树棵数
6
7
8
9
10
人数
3
6
3
12
6
根据以上材料回答下列问题:
(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;
(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
20.(6分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
(1)求证:CF=DF;
(2)连接OF,若AB=10,BC=6,求线段OF的长.
21.(6分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
22.(8分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
23.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
(1)求线段AB的表达式,并写出自变量x的取值范围;
(2)求乙的步行速度;
(3)求乙比甲早几分钟到达终点?
24.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的长.
25.(10分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
26.(12分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
27.(12分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
y<0时,即x轴下方的部分,
∴自变量x的取值范围分两个部分是−1
故选B.
2、C
【解析】
设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
【详解】
解:设大马有x匹,小马有y匹,由题意得:,
故选C.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
3、D
【解析】
根据二次根式的意义,被开方数是非负数.
【详解】
根据题意得,
解得.
故选D.
【点睛】
本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负数.
4、C
【解析】
根据A点坐标即可建立平面直角坐标.
【详解】
解:由A(0,2),B(1,1)可知原点的位置,
建立平面直角坐标系,如图,
∴C(2,-1)
故选:C.
【点睛】
本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
5、D
【解析】
试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
故选D
点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
6、C
【解析】
俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.
【详解】
A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,
B.几何体的俯视图是长方形,故本选项不符合题意,
C.三棱柱的俯视图是三角形,故本选项符合题意,
D.圆台的俯视图是圆环,故本选项不符合题意,
故选C.
【点睛】
此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.
7、B
【解析】
由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
【详解】
解:∵四边形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y轴,AD∥BC∥x轴
∴点D坐标为(5,4)
故选B.
【点睛】
本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.
8、D
【解析】
试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
考点:D.
9、D
【解析】
根据实数大小比较法则判断即可.
【详解】
<0<1<,
故选D.
【点睛】
本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
10、B
【解析】
根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
【详解】
在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,
∴AC===10,
∵DE是△ABC的中位线,
∴DF∥BM,DE=BC=3,
∴∠EFC=∠FCM,
∵∠FCE=∠FCM,
∴∠EFC=∠ECF,
∴EC=EF=AC=5,
∴DF=DE+EF=3+5=2.
故选B.
11、D
【解析】
由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.
【详解】
解:∵方程x2−5x+2=0的两个解分别为x1,x2,
∴x1+x2=5,x1•x2=2,
∴x1+x2−x1•x2=5−2=1.
故选D.
【点睛】
本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.
12、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6
【解析】
根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.
【详解】
解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,
∴边长为6的正六边形外接圆半径是6,故答案为:6.
【点睛】
本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.
14、
【解析】
试题分析:如图,连接OB.
∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=×1=.
∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.
∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中点.
∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.
15、
【解析】
由题中所给条件证明△ADF△ACG,可求出的值.
【详解】
解:在△ADF和△ACG中,
AB=6,AC=5,D是边AB的中点
AG是∠BAC的平分线,
∴∠DAF=∠CAG
∠ADE=∠C
∴△ADF△ACG
∴.
故答案为.
【点睛】
本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.
16、①②④
【解析】
分析:∵四边形ABCD是正方形,∴AB=AD。
∵△AEF是等边三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③说法错误。
∵EF=2,∴CE=CF=。
设正方形的边长为a,在Rt△ADF中,,解得,
∴。
∴。∴④说法正确。
综上所述,正确的序号是①②④。
17、(0,0)或(0,﹣8)或(﹣6,0)
【解析】
由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
【详解】
解:∵P(﹣3,﹣4)到原点距离为5,
而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
故答案是:(0,0)或(0,﹣8)或(﹣6,0).
18、
【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.
【详解】
∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,
∴∠EOB=∠FOC,
在△BOE和△COF中,,
∴△BOE≌△COF(ASA)
∴BE=FC=2,
同理BF=AE=3,
在Rt△BEF中,BF=3,BE=2,
∴EF==.
故答案为
【点睛】
本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)9,9;(2)乙;(3)1680棵;
【解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
【详解】
(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
故答案为:9,9;
(2)乙同学所抽取的样本能更好反映此次植树活动情况;
故答案为:乙;
(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
答:本次活动200位同学一共植树1680棵.
【点睛】
本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
20、(1)详见解析;(2)OF=.
【解析】
(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
【详解】
(1)证明:连接OC,如图,
∵CF为切线,
∴OC⊥CF,
∴∠1+∠3=90°,
∵BM⊥AB,
∴∠2+∠4=90°,
∵OC=OB,
∴∠1=∠2,
∴∠3=∠4,
∵AB为直径,
∴∠ACB=90°,
∴∠3+∠5=90°,∠4+∠BDC=90°,
∴∠BDC=∠5,
∴CF=DF;
(2)在Rt△ABC中,AC==8,
∵∠BAC=∠DAB,
∴△ABC∽△ABD,
∴,即,
∴AD=,
∵∠3=∠4,
∴FC=FB,
而FC=FD,
∴FD=FB,
而BO=AO,
∴OF为△ABD的中位线,
∴OF=AD=.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
21、(1)C(2)(3)b<﹣且b≠﹣2或b>
【解析】
(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
【详解】
(1)点B关于直线x=4的对称点为B′(10,﹣),
∴直线AB′解析式为:y=﹣,
当x=4时,y=,
故答案为:C
(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
作BH⊥l于点H
∵点A和A′关于直线l对称
∴∠APG=∠A′PG
∵∠BPH=∠A′PG
∴∠APG=∠BPH
∵∠AGP=∠BHP=90°
∴△AGP∽△BHP
∴,即,
∴mn=2,即m=,
∵∠APB=α,AP=AP′,
∴∠A=∠A′=,
在Rt△AGP中,tan
(3)如图,当点P位于直线AB的右下方,∠APB=60°时,
点P在以AB为弦,所对圆周为60°,且圆心在AB下方
若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
由对称性可知:∠APQ=∠A′PQ,
又∠APB=60°
∴∠APQ=∠A′PQ=60°
∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
∴∠BAQ=60°=∠AQB=∠ABQ
∴△ABQ是等边三角形
∵线段AB为定线段
∴点Q为定点
若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
∴直线y=ax+b(a≠0)过定点Q
连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
∵A(2,),B(﹣2,﹣)
∴OA=OB=
∵△ABQ是等边三角形
∴∠AOQ=∠BOQ=90°,OQ=,
∴∠AOM+∠NOD=90°
又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
∵∠AMO=∠ONQ=90°
∴△AMO∽△ONQ
∴,
∴,
∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
设直线BQ解析式为y=kx+b
将B、Q坐标代入得
,
解得
,
∴直线BQ的解析式为:y=﹣,
设直线AQ的解析式为:y=mx+n,
将A、Q两点代入,
解得 ,
∴直线AQ的解析式为:y=﹣3,
若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
又∵y=ax+b(a≠0),且点P位于AB右下方,
∴b<﹣ 且b≠﹣2或b>.
【点睛】
本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
22、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
23、(1);(2)80米/分;(3)6分钟
【解析】
(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.
【详解】
(1)根据题意得:
设线段AB的表达式为:y=kx+b (4≤x≤16),
把(4,240),(16,0)代入得:
,
解得:,
即线段AB的表达式为:y= -20x+320 (4≤x≤16),
(2)又线段OA可知:甲的速度为:=60(米/分),
乙的步行速度为:=80(米/分),
答:乙的步行速度为80米/分,
(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
与终点的距离为:2400-960=1440(米),
相遇后,到达终点甲所用的时间为:=24(分),
相遇后,到达终点乙所用的时间为:=18(分),
24-18=6(分),
答:乙比甲早6分钟到达终点.
【点睛】
本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.
24、(1)证明见解析;(2)1.
【解析】
(1)根据切线的性质和平行线的性质解答即可;
(2)根据直角三角形的性质和三角函数解答即可.
【详解】
(1)连接OD,
∵OD=OE,
∴∠ODE=∠OED.
∵直线BC为⊙O的切线,
∴OD⊥BC.
∴∠ODB=90°.
∵∠ACB=90°,
∴OD∥AC.
∴∠ODE=∠F.
∴∠OED=∠F.
∴AE=AF;
(2)连接AD,
∵AE是⊙O的直径,
∴∠ADE=90°,
∵AE=AF,
∴DF=DE=3,
∵∠ACB=90°,
∴∠DAF+∠F=90°,∠CDF+∠F=90°,
∴∠DAF=∠CDF=∠BDE,
在Rt△ADF中,=sin∠DAF=sin∠BDE=,
∴AF=3DF=9,
在Rt△CDF中,=sin∠CDF=sin∠BDE=,
∴CF=DF=1,
∴AC=AF﹣CF=1.
【点睛】
本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.
25、(1);(2)1或9.
【解析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
26、(1)见解析;(2)图见解析;.
【解析】
(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
【详解】
解:(1)△A1B1C1如图所示.
(2)△A2B2C2如图所示.
∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
∴S△A1B1C1:S△A2B2C2=()2=.
27、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
2022年黑龙江省齐齐哈尔市建华区、克东县中考数学三模试卷(含解析): 这是一份2022年黑龙江省齐齐哈尔市建华区、克东县中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022届黑龙江齐齐哈尔市建华区重点中学中考数学模试卷含解析: 这是一份2022届黑龙江齐齐哈尔市建华区重点中学中考数学模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高,下列计算正确的是等内容,欢迎下载使用。
2021-2022学年黑龙江省齐齐哈尔市建华区中考押题数学预测卷含解析: 这是一份2021-2022学年黑龙江省齐齐哈尔市建华区中考押题数学预测卷含解析,共21页。试卷主要包含了二次函数,《语文课程标准》规定等内容,欢迎下载使用。