![2021-2022学年河南省漯河召陵区七校联考中考数学模拟精编试卷含解析01](http://www.enxinlong.com/img-preview/2/3/13285544/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年河南省漯河召陵区七校联考中考数学模拟精编试卷含解析02](http://www.enxinlong.com/img-preview/2/3/13285544/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年河南省漯河召陵区七校联考中考数学模拟精编试卷含解析03](http://www.enxinlong.com/img-preview/2/3/13285544/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年河南省漯河召陵区七校联考中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
2.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
A.6 B.5 C.2 D.3
3.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是
A. B. C. D.
4.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )
A.315° B.270° C.180° D.135°
5.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
6.某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
7.化简的结果是( )
A. B. C. D.
8.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
9.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )
A. B. C. D.
10.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.
12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______
13.一元二次方程x(x﹣2)=x﹣2的根是_____.
14.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.
15.化简的结果为_____.
16.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在矩形ABCD中,E是BC边上的点,,垂足为F.
(1)求证:;
(2)如果,求的余切值.
18.(8分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
19.(8分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.
20.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
21.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
22.(10分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)
23.(12分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
24.已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度数;
(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
【详解】
对于数据:6,3,4,7,6,0,1,
这组数据按照从小到大排列是:0,3,4,6,6,7,1,
这组数据的平均数是: 中位数是6,
故选C.
【点睛】
本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
2、C
【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,
∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,
∵AE⊥BD,AE=3,
∴AB=,
故选C.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
3、A
【解析】
由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
【详解】
解:由题意得,,,
由勾股定理得,,
.
故选:A.
【点睛】
本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
4、B
【解析】
利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
【详解】
如图,
∵∠1、∠2是△CDE的外角,
∴∠1=∠4+∠C,∠2=∠3+∠C,
即∠1+∠2=2∠C+(∠3+∠4),
∵∠3+∠4=180°-∠C=90°,
∴∠1+∠2=2×90°+90°=270°.
故选B.
【点睛】
此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
5、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
6、D
【解析】
解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
故选D.
【点睛】
本题考查几何体的三视图.
7、D
【解析】
将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
【详解】
原式=×=×(+1)=2+.
故选D.
【点睛】
本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
8、C
【解析】
绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
【详解】
n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
【点睛】
本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.
9、B
【解析】
解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.
点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
10、A
【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选A.
【点睛】
此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC
为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.
详解:如图1,连接AO,
∵AB=AC,点O是BC的中点,
∴AO⊥BC,
又∵
∴
∴
∴弧BC的长为:(m),
∴将剪下的扇形围成的圆锥的半径是:
(m),
∴圆锥的高是:
故答案为.
点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.
12、
【解析】
【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.
【详解】设反比例函数解析式为y=,
由题意得:m2=2m×(-1),
解得:m=-2或m=0(不符题意,舍去),
所以点A(-2,-2),点B(-4,1),
所以k=4,
所以反比例函数解析式为:y=,
故答案为y=.
【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.
13、1或1
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案.
【详解】
x(x﹣1)=x﹣1,
x(x﹣1)﹣(x﹣1)=0,
(x﹣1)(x﹣1)=0,
x﹣1=0,x﹣1=0,
x1=1,x1=1,
故答案为:1或1.
【点睛】
本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.
14、
【解析】
列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.
【详解】
解:列表得:
两个骰子向上的一面的点数和小于6的有10种,
则其和小于6的概率是,
故答案为:.
【点睛】
本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.
15、+1
【解析】
利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.
【详解】
原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.
故答案为:+1.
【点睛】
本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、x>﹣1.
【解析】
一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.
【详解】
当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.
故答案为:x>﹣1.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(共8题,共72分)
17、(1)见解析;(2).
【解析】
(1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.
【详解】
解:(1)证明:四边形是矩形,
,
,
在和中,
,
,
;
(2),
,
设,
,
,
,
,
,
,
,
.
【点睛】
本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.
18、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
【解析】
(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
【详解】
(1)证明:过F作FH⊥BE于H点,
在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四边形BHFC为矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H为BE中点,
∴BE=2BH,
∴BE=2CF;
(2)四边形BFGN是菱形.
证明:
∵将线段EF绕点F顺时针旋转90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中,,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四边形,
∵EF=BF,∴NB=BF,
∴平行四边NBFG是菱形.
点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
19、,.
【解析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
【详解】
解:原式
当时
原式
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
20、(1) (2)证明见解析
【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
【详解】
解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
在 Rt△ABE 中,∵OB=OE,
∴BE=2OA=2,
∵MB=ME,
∴∠MBE=∠MEB=15°,
∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
∵AB2+AE2=BE2,
∴,
∴x= (负根已经舍弃),
∴AB=AC=(2+ )• ,
∴BC= AB= +1.
作 CQ⊥AC,交 AF 的延长线于 Q,
∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,
∵∠BAC=90°,FG⊥CD,
∴∠AEB=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
∴△ABE≌△CAQ(ASA),
∴BE=AQ,∠AEB=∠Q,
∴∠CMF=∠Q,
∵∠MCF=∠QCF=45°,CF=CF,
∴△CMF≌△CQF(AAS),
∴FM=FQ,
∴BE=AQ=AF+FQ=AF=FM,
∵EG=MG,
∴BG=BE+EG=AF+FM+MG=AF+FG.
【点睛】
本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
21、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(1)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
【详解】
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(1)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r1=4,即r=1,
即⊙O的半径的长为1.
【点睛】
本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
22、答案见解析
【解析】
连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.
【详解】
解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O于点A,A′,作直线PA,PA′,
直线PA,PA′即为所求.
【点睛】
本题考查作图−复杂作图,解题的关键是灵活运用所学知识解决问题.
23、(1)详见解析(2)
【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.
【详解】
(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果;
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.
∴P(一次打开锁)=.
【点睛】
如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
24、:(1) 30º;(2).
【解析】
分析:
(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;
(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.
详解:
(1) ∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,
∴∠CBA=∠A=60º,
∵BD平分∠ABC,
∴∠CDB=∠ABD=∠CBA=30º,
(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.
∴BD=AD A=2tan60º=2.
过点D作DH⊥AB,垂足为H,
∴AH=ADA=2sin60º=.
∵∠CDB=∠CBD=∠CBD=30º,
∴DC=BC=AD=2
∵AB=2AD=4
∴.
点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.
河南省漯河召陵区七校联考2023-2024学年八上数学期末联考试题含答案: 这是一份河南省漯河召陵区七校联考2023-2024学年八上数学期末联考试题含答案,共8页。试卷主要包含了下列各式,下列等式中正确的是,方程组 的解是,若分式的值为零,则x的值为等内容,欢迎下载使用。
2023年河南省漯河市召陵区中考数学二模试卷: 这是一份2023年河南省漯河市召陵区中考数学二模试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河南省漯河市召陵区中考数学二模试卷(含解析): 这是一份2023年河南省漯河市召陵区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。