|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年河南省新乡市长垣市市级名校中考三模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年河南省新乡市长垣市市级名校中考三模数学试题含解析01
    2021-2022学年河南省新乡市长垣市市级名校中考三模数学试题含解析02
    2021-2022学年河南省新乡市长垣市市级名校中考三模数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河南省新乡市长垣市市级名校中考三模数学试题含解析

    展开
    这是一份2021-2022学年河南省新乡市长垣市市级名校中考三模数学试题含解析,共21页。试卷主要包含了下列四个实数中,比5小的是,已知,在平面直角坐标系中,点等内容,欢迎下载使用。

    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
    一、选择题(共10小题,每小题3分,共30分)
    1.sin45°的值等于( )
    A.B.1C.D.
    2.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
    A.B.C.D.
    3.下列四个实数中,比5小的是( )
    A.B.C.D.
    4.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )

    A.图2B.图1与图2C.图1与图3D.图2与图3
    5.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
    A.14B.7C.﹣2D.2
    6.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为( )
    A.B.C.D.
    7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )
    A.20°B.35°C.40°D.70°
    8.在平面直角坐标系中,点(-1,-2)所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    9.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为( )
    A.4B.5C.8D.10
    10.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )
    A.B.C.D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.
    12.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .
    13.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是 .
    14.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.
    15.分解因式:= .
    16.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.
    三、解答题(共8题,共72分)
    17.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
    根据统计图所提供的信息,解答下列问题:
    (1)本次抽样调查中的样本容量是 ;
    (2)补全条形统计图;
    (3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
    18.(8分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=BF.
    19.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
    (1)求抛物线的解析式;
    (2)当PO+PC的值最小时,求点P的坐标;
    (3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
    20.(8分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0).
    求该抛物线的解析式;求梯形COBD的面积.
    21.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
    (1)判断直线AC与圆O的位置关系,并证明你的结论;
    (2)若AC=8,cs∠BED=,求AD的长.
    22.(10分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
    (1)直接写出抛物线y=x2的焦点坐标以及直径的长.
    (2)求抛物线y=x2-x+的焦点坐标以及直径的长.
    (3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
    (4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
    ②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
    23.(12分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)
    24.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
    (1)甲种商品与乙种商品的销售单价各多少元?
    (2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据特殊角的三角函数值得出即可.
    【详解】
    解:sin45°=,
    故选:D.
    【点睛】
    本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
    2、D
    【解析】
    圆锥的侧面积=×80π×90=3600π(cm2) .
    故选D.
    3、A
    【解析】
    首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
    【详解】
    解:A、∵5<<6,
    ∴5﹣1<﹣1<6﹣1,
    ∴﹣1<5,故此选项正确;
    B、∵
    ∴,故此选项错误;
    C、∵6<<7,
    ∴5<﹣1<6,故此选项错误;
    D、∵4<<5,
    ∴,故此选项错误;
    故选A.
    【点睛】
    考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
    4、C
    【解析】
    【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
    【详解】图1中,根据作图痕迹可知AD是角平分线;
    图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
    图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
    ∴∠3=∠4,
    ∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
    ∴DM=DE,
    又∵AD是公共边,∴△ADM≌△ADE,
    ∴∠1=∠2,即AD平分∠BAC,
    故选C.
    【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
    5、D
    【解析】
    解不等式得到x≥m+3,再列出关于m的不等式求解.
    【详解】
    ≤﹣1,
    m﹣1x≤﹣6,
    ﹣1x≤﹣m﹣6,
    x≥m+3,
    ∵关于x的一元一次不等式≤﹣1的解集为x≥4,
    ∴m+3=4,解得m=1.
    故选D.
    考点:不等式的解集
    6、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.
    7、B
    【解析】
    先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.
    【详解】
    ∵AD是△ABC的中线,AB=AC,∠CAD=20°,
    ∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.
    ∵CE是△ABC的角平分线,
    ∴∠ACE=∠ACB=35°.
    故选B.
    【点睛】
    本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.
    8、C
    【解析】
    :∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C
    9、D
    【解析】
    利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.
    【详解】
    解:∵矩形ABCD的对角线AC,BD相交于点O,
    ∴∠BAD=90°,点O是线段BD的中点,
    ∵点M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴AD=2OM=1.
    ∴在直角△ABD中,由勾股定理知:BD=.
    故选:D.
    【点睛】
    本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.
    10、C
    【解析】
    △AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;
    解:(1)当0<x≤1时,如图,
    在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
    ∵MN⊥AC,
    ∴MN∥BD;
    ∴△AMN∽△ABD,
    ∴=,
    即,=,MN=x;
    ∴y=AP×MN=x2(0<x≤1),
    ∵>0,
    ∴函数图象开口向上;
    (2)当1<x<2,如图,
    同理证得,△CDB∽△CNM,=,
    即=,MN=2-x;
    ∴y=
    AP×MN=x×(2-x),
    y=-x2+x;
    ∵-<0,
    ∴函数图象开口向下;
    综上答案C的图象大致符合.
    故选C.
    本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
    详解:连接AC,交EF于点M,
    ∵AE丄EF,EF丄FC,
    ∴∠E=∠F=90°,
    ∵∠AME=∠CMF,
    ∴△AEM∽△CFM,
    ∴,
    ∵AE=1,EF=FC=3,
    ∴,
    ∴EM=,FM=,
    在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
    在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
    ∴AC=AM+CM=5,
    在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
    ∴AB=,即正方形的边长为.
    故答案为:.
    点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
    12、65°
    【解析】
    解:由题意分析之,得出弧BD对应的圆周角是∠DAB,
    所以,=40°,由此则有:∠OCD=65°
    考点:本题考查了圆周角和圆心角的关系
    点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握
    13、m≤1.
    【解析】
    试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.
    考点:根的判别式.
    14、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    67000000000的小数点向左移动10位得到6.7,
    所以67000000000用科学记数法表示为,
    故答案为:.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    15、
    【解析】
    试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
    先提取公因式后继续应用平方差公式分解即可:。
    16、4π
    【解析】
    根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.
    【详解】
    解:∵四边形ABCD内接于⊙O,
    ∴∠BCD+∠A=180°,
    ∵∠BOD=2∠A,∠BOD=∠BCD,
    ∴2∠A+∠A=180°,
    解得:∠A=60°,
    ∴∠BOD=120°,
    ∴的长=,
    故答案为4π.
    【点睛】
    本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.
    三、解答题(共8题,共72分)
    17、(1)100;(2)作图见解析;(3)1.
    【解析】
    试题分析:(1)根据百分比= 计算即可;
    (2)求出“打球”和“其他”的人数,画出条形图即可;
    (3)用样本估计总体的思想解决问题即可.
    试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
    故答案为100;
    (2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:
    (3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
    18、见解析.
    【解析】
    先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.
    【详解】
    ∵AE为△ABC的角平分线,CH⊥AE,
    ∴△ACF是等腰三角形,
    ∴AF=AC,HF=CH,
    ∵AD为△ABC的中线,
    ∴DH是△BCF的中位线,
    ∴DH=BF.
    【点睛】
    本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=BF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.
    19、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)D与P重合时有最小值,求出点D的坐标即可;
    (3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,且顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
    ∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
    (2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
    ∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
    ∴当点P与点D重合时,PO+PC的值最小,
    设直线AC的解析式为y=kx+b,
    根据题意,得解得
    ∴直线AC的解析式为,
    当x=2时,,
    ∴当PO+PC的值最小时,点P的坐标为(2,);
    (3)存在.
    ①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
    ②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
    当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
    综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
    【点睛】
    二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
    20、(1)(2)
    【解析】
    (1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式.
    (2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积.
    【详解】
    (1)将A(―1,0)代入中,得:0=4a+4,解得:a=-1.
    ∴该抛物线解析式为.
    (2)对于抛物线解析式,令x=0,得到y=2,即OC=2,
    ∵抛物线的对称轴为直线x=1,∴CD=1.
    ∵A(-1,0),∴B(2,0),即OB=2.
    ∴.
    21、(1)AC与⊙O相切,证明参见解析;(2).
    【解析】
    试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cs∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cs∠BED=,同样利用三角函数值,可求AD.
    试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cs∠C=cs∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cs∠OAD=cs∠BED=,∴AD=AB•cs∠OAD=12×=.
    考点:1.切线的判定;2.解直角三角形.
    22、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
    【解析】
    (1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;
    (1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;
    (3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;
    (4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;
    ②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.
    【详解】
    (1)∵抛物线y=x1,
    ∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,
    ∴抛物线y=x1的焦点坐标为(0,1),
    将y=1代入y=x1,得x1=-1,x1=1,
    ∴此抛物线的直径是:1-(-1)=4;
    (1)∵y=x1-x+=(x-3)1+1,
    ∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,
    ∴焦点坐标为(3,3),
    将y=3代入y=(x-3)1+1,得
    3=(x-3)1+1,解得,x1=5,x1=1,
    ∴此抛物线的直径时5-1=4;
    (3)∵焦点A(h,k+),
    ∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,
    ∴直径为:h+-(h-)==,
    解得,a=±,
    即a的值是;
    (4)①由(3)得,BC=,
    又CD=A'A=.
    所以,S=BC•CD=•==1.
    解得,a=±;
    ②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
    理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:
    B(1,3),C(5,3),E(1,1),D(5,1),
    当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,
    ∴当m=1-或m=5+时,1个公共点;
    当1-<m≤1或5≤m<5+时,1个公共点.
    由图可知,公共点个数随m的变化关系为
    当m<1-时,无公共点;
    当m=1-时,1个公共点;
    当1-<m≤1时,1个公共点;
    当1<m<5时,3个公共点;
    当5≤m<5+时,1个公共点;
    当m=5+时,1个公共点;
    当m>5+时,无公共点;
    由上可得,当m=1-或m=5+时,1个公共点;
    当1-<m≤1或5≤m<5+时,1个公共点.
    【点睛】
    考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.
    23、(1)证明见解析 (2)﹣6π
    【解析】
    (1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
    (2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
    【详解】
    (1)证明:连接OD,
    ∵D为弧BC的中点,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠BAD=∠ADO,
    ∴∠CAD=∠ADO,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
    ∴OD⊥EF,
    ∴EF为半圆O的切线;
    (2)解:连接OC与CD,
    ∵DA=DF,
    ∴∠BAD=∠F,
    ∴∠BAD=∠F=∠CAD,
    又∵∠BAD+∠CAD+∠F=90°,
    ∴∠F=30°,∠BAC=60°,
    ∵OC=OA,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,∠COB=120°,
    ∵OD⊥EF,∠F=30°,
    ∴∠DOF=60°,
    在Rt△ODF中,DF=6,
    ∴OD=DF•tan30°=6,
    在Rt△AED中,DA=6,∠CAD=30°,
    ∴DE=DA•sin30°=3,EA=DA•cs30°=9,
    ∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
    由CO=DO,
    ∴△COD是等边三角形,
    ∴∠OCD=60°,
    ∴∠DCO=∠AOC=60°,
    ∴CD∥AB,
    故S△ACD=S△COD,
    ∴S阴影=S△AED﹣S扇形COD==.
    【点睛】
    此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
    24、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
    【解析】
    (1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
    (1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
    【详解】
    (1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
    ,解得.
    答:甲种商品的销售单价900元,乙种商品的销售单价600元;
    (1)设销售甲种商品a万件,依题意有:
    900a+600(8﹣a)≥5400,解得:a≥1.
    答:至少销售甲种商品1万件.
    【点睛】
    本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
    相关试卷

    2023年河南省新乡市长垣县中考数学二模试卷(含解析): 这是一份2023年河南省新乡市长垣县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省新乡市长垣县达标名校2022年中考二模数学试题含解析: 这是一份河南省新乡市长垣县达标名校2022年中考二模数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,若二元一次方程组的解为则的值为等内容,欢迎下载使用。

    河南省新乡市长垣县达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份河南省新乡市长垣县达标名校2021-2022学年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,一、单选题,若与 互为相反数,则x的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map