|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年黑龙江省肇源县重点中学中考三模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年黑龙江省肇源县重点中学中考三模数学试题含解析01
    2021-2022学年黑龙江省肇源县重点中学中考三模数学试题含解析02
    2021-2022学年黑龙江省肇源县重点中学中考三模数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省肇源县重点中学中考三模数学试题含解析

    展开
    这是一份2021-2022学年黑龙江省肇源县重点中学中考三模数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣2+3的结果是,若点A,最小的正整数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )

    A. B.
    C. D.
    2.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=(  )

    A. B. C. D.
    3.下列多边形中,内角和是一个三角形内角和的4倍的是(  )
    A.四边形 B.五边形 C.六边形 D.八边形
    4.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    5.计算﹣2+3的结果是(  )
    A.1 B.﹣1 C.﹣5 D.﹣6
    6.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是(  )
    A. B.
    C. D.
    7.最小的正整数是(  )
    A.0 B.1 C.﹣1 D.不存在
    8.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  )
    A.若这5次成绩的中位数为8,则x=8
    B.若这5次成绩的众数是8,则x=8
    C.若这5次成绩的方差为8,则x=8
    D.若这5次成绩的平均成绩是8,则x=8
    9.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )

    A. B. C. D.
    10.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )

    A.3 B.3.2 C.4 D.4.5
    11.计算(-ab2)3÷(-ab)2的结果是(  )
    A.ab4 B.-ab4 C.ab3 D.-ab3
    12.下列立体图形中,主视图是三角形的是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .

    14.抛物线(为非零实数)的顶点坐标为_____________.
    15.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)

    16.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
    17.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.

    18.若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|++3|a﹣b|=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.
    20.(6分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.

    21.(6分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:

    时间(分钟)
    里程数(公里)
    车费(元)
    小明
    8
    8
    12
    小刚
    12
    10
    16
    (1)求x,y的值;
    (2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
    22.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
    23.(8分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.

    24.(10分)一道选择题有四个选项.
    (1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
    (2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
    25.(10分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.
    26.(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)

    27.(12分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
    求证:AE∥CF.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
    当点Q在BC上时,如下图所示:

    ∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
    点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
    2、C
    【解析】
    由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
    【详解】
    解:∵四边形ABCD和四边形CEFG是正方形,
    ∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
    ∴DG=CG-CD=2,AD∥GF,
    则△ADM∽△FGM,
    ∴,即 ,
    解得:GM= ,
    ∴FM= = = ,
    故选:C.
    【点睛】
    本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
    3、C
    【解析】
    利用多边形的内角和公式列方程求解即可
    【详解】
    设这个多边形的边数为n.
    由题意得:(n﹣2)×180°=4×180°.
    解得:n=1.
    答:这个多边形的边数为1.
    故选C.
    【点睛】
    本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.
    4、B
    【解析】
    分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
    详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
    设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
    在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
    点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
    5、A
    【解析】
    根据异号两数相加的法则进行计算即可.
    【详解】
    解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
    故选A.
    【点睛】
    本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
    6、D
    【解析】
    将,代入,得,,然后分析与的正负,即可得到的大致图象.
    【详解】
    将,代入,得,,
    即,.
    ∴.
    ∵,∴,∴.
    即与异号.
    ∴.
    又∵,
    故选D.
    【点睛】
    本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
    7、B
    【解析】
    根据最小的正整数是1解答即可.
    【详解】
    最小的正整数是1.
    故选B.
    【点睛】
    本题考查了有理数的认识,关键是根据最小的正整数是1解答.
    8、D
    【解析】
    根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
    【详解】
    A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
    B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
    C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
    D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
    故选D.
    【点睛】
    本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    9、C
    【解析】
    过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
    【详解】
    过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
    ∵⊙O的周长等于6πcm,
    ∴2πr=6π,
    解得:r=3,
    ∴⊙O的半径为3cm,即OA=3cm,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=×360°=60°,OA=OB,
    ∴△OAB是等边三角形,
    ∴AB=OA=3cm,
    ∵OH⊥AB,
    ∴AH=AB,
    ∴AB=OA=3cm,
    ∴AH=cm,OH==cm,
    ∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).

    故选C.
    【点睛】
    此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
    10、B
    【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.
    11、B
    【解析】
    根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
    (-ab2)3÷(-ab)2
    =-a3b6÷a2b2
    =-ab4,
    故选B.
    12、A
    【解析】
    考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
    【详解】
    A、圆锥的主视图是三角形,符合题意;
    B、球的主视图是圆,不符合题意;
    C、圆柱的主视图是矩形,不符合题意;
    D、正方体的主视图是正方形,不符合题意.
    故选A.
    【点睛】
    主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
    【详解】
    ∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
    ∴DE=AC=5,
    ∴AC=2.
    在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得

    故答案是:1.
    14、
    【解析】
    【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.
    【详解】y=mx2+2mx+1
    =m(x2+2x)+1
    =m(x2+2x+1-1)+1
    =m(x+1)2 +1-m,
    所以抛物线的顶点坐标为(-1,1-m),
    故答案为(-1,1-m).
    【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.
    15、6.2
    【解析】
    根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.
    【详解】
    解:在Rt△ABC中,
    ∵∠ACB=90°,
    ∴BC=AB•sin∠BAC=12×0.515≈6.2(米),
    答:大厅两层之间的距离BC的长约为6.2米.
    故答案为:6.2.
    【点睛】
    本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.
    16、1.
    【解析】
    如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
    【详解】
    如图,作BH⊥AC于H.

    ∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
    ∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
    故答案为:1.
    【点睛】
    本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
    17、7π
    【解析】
    连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
    【详解】
    连接OD,

    ∵直线DE与⊙O相切于点D,
    ∴∠EDO=90°,
    ∵∠CDE=20°,
    ∴∠ODB=180°-90°-20°=70°,
    ∵OD=OB,
    ∴∠ODB=∠OBD=70°,
    ∴∠AOD=140°,
    ∴的长==7π,
    故答案为:7π.
    【点睛】
    本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.
    18、﹣5a+4b﹣3c.
    【解析】
    直接利用数轴结合二次根式、绝对值的性质化简得出答案.
    【详解】
    由数轴可得:a+c<0,b-c>0,a-b<0,
    故原式=-2(a+c)+b-c-3(a-b)
    =-2a-2c+b-c-3a+3b
    =-5a+4b-3c.
    故答案为-5a+4b-3c.
    【点睛】
    此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、,1.
    【解析】
    先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.
    【详解】
    原式=•
    =•
    =.
    ∵由题意,x不能取1,﹣1,﹣2,∴x取2.
    当x=2时,原式===1.
    【点睛】
    本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键.
    20、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;

    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
    21、(1)x=1,y=;(2)小华的打车总费用为18元.
    【解析】
    试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.
    (2)根据里程数和时间来计算总费用.
    试题解析:
    (1)由题意得,
    解得;
    (2)小华的里程数是11km,时间为14min.
    则总费用是:11x+14y=11+7=18(元).
    答:总费用是18元.
    22、(1);(2)
    【解析】
    分析:(1)直接利用概率公式求解;
    (2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
    详解:(1)甲队最终获胜的概率是;
    (2)画树状图为:

    共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
    所以甲队最终获胜的概率=.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    23、
    【解析】
    试题分析:
    由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.
    试题解析:
    ∵四边形ABCD是矩形,
    ∴OA=OB=OD,∠BAD=90°,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴OB=OA=2,
    ∴BD=2OB=4,
    在Rt△ABD中
    ∴AD===.
    24、(1);(2)
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
    【详解】
    解:(1)选中的恰好是正确答案A的概率为;
    (2)画树状图:

    共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
    所以选中的恰好是正确答案A,B的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    25、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
    26、(1)2;(2)宣传牌CD高(20﹣1)m.
    【解析】
    试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;
    (2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.
    试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.
    答:点B距水平面AE的高度BH是2米;
    (2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.

    27、证明见解析
    【解析】
    试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
    证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
    ∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
    ∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
    ∴AE∥CF.

    相关试卷

    2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析): 这是一份2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析): 这是一份2023年黑龙江省大庆市肇源县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省桦南县重点中学2021-2022学年中考数学模试卷含解析: 这是一份黑龙江省桦南县重点中学2021-2022学年中考数学模试卷含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map