


2021-2022学年湖南省邵阳市市级名校中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )
A. B.﹣ C.2+ D.2﹣
2.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )
A.62° B.56° C.60° D.28°
3.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是( )
A.k>0 B.k≥0 C.k>4 D.k≥4
4.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
5.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为( )
A. B. C. D.
6.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
7.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )
A.8cm B.4cm C.4cm D.5cm
9.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为( )
A.6 B.9 C.11 D.无法计算
10.如图,在中,,,,点分别在上,于,则的面积为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.
12.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.
13.分解因式:= .
14.若,则= .
15.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.
16.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.
三、解答题(共8题,共72分)
17.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.
18.(8分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.
19.(8分)解不等式组
请结合题意填空,完成本题的解答.
(I)解不等式(1),得 ;
(II)解不等式(2),得 ;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为 .
20.(8分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
21.(8分)某公司10名销售员,去年完成的销售额情况如表:
销售额(单位:万元)
3
4
5
6
7
8
10
销售员人数(单位:人)
1
3
2
1
1
1
1
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.
23.(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
24.在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
(1)①已知O为坐标原点,点,,则_________,_________;
②点C在直线上,求出的最小值;
(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.
【详解】
解:连接OC交MN于点P,连接OM、ON,
由题意知,OC⊥MN,且OP=PC=1,
在Rt△MOP中,∵OM=2,OP=1,
∴cos∠POM==,AC==,
∴∠POM=60°,MN=2MP=2,
∴∠AOB=2∠AOC=120°,
则图中阴影部分的面积=S半圆-2S弓形MCN
=×π×22-2×(-×2×1)
=2- π,
故选D.
【点睛】
本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.
2、A
【解析】
连接OB.
在△OAB中,OA=OB(⊙O的半径),
∴∠OAB=∠OBA(等边对等角);
又∵∠OAB=28°,
∴∠OBA=28°;
∴∠AOB=180°-2×28°=124°;
而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠C=62°;
故选A
3、D
【解析】
由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.
【详解】
∵关于x的方程x2-x+1=0有实数根,
∴,
解得:k≥1.
故选D.
【点睛】
本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
4、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
5、A
【解析】
试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
设BD=a,则OC=3a.
∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
同理,可求出点D的坐标为(1﹣a,a).
∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.
6、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
7、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
8、C
【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
【详解】
解:连接OC,如图所示:
∵AB是⊙O的直径,弦CD⊥AB,
∴
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE为△AOC的外角,
∴∠COE=45°,
∴△COE为等腰直角三角形,
∴
故选:C.
【点睛】
此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
9、B
【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
【详解】
把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
∴C、B、H'在一直线上,且AB为△ACH'的中线,
∴S△BEI=S△ABH′=S△ABC,
同理:S△CDF=S△ABC,
当∠BAC=90°时,
S△ABC的面积最大,
S△BEI=S△CDF=S△ABC最大,
∵∠ABC=∠CBG=∠ABI=90°,
∴∠GBE=90°,
∴S△GBI=S△ABC,
所以阴影部分面积之和为S△ABC的3倍,
又∵AB=2,AC=3,
∴图中阴影部分的最大面积为3× ×2×3=9,
故选B.
【点睛】
本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
10、C
【解析】
先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;
【详解】
∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如图2,过点P作PE⊥BC于E,
在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴ ,
∴ ,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6- )=,故选C.
【点睛】
本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、13
【解析】
试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.
设母线长为R,则:
解得:
故答案为13.
12、10.5
【解析】
先证△AEB∽△ABC,再利用相似的性质即可求出答案.
【详解】
解:由题可知,BE⊥AC,DC⊥AC
∵BE//DC,
∴△AEB∽△ADC,
∴,
即:,
∴CD=10.5(m).
故答案为10.5.
【点睛】
本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.
13、
【解析】
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
先提取公因式后继续应用平方差公式分解即可:。
14、1.
【解析】
试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
考点:二次根式有意义的条件.
15、π
【解析】
取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
【详解】
解:如图,取的中点,取的中点,连接,,,
∵在等腰中,,点在以斜边为直径的半圆上,
∴,
∵为的中位线,
∴,
∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
∴弧长,
故答案为:.
【点睛】
本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
16、2
【解析】
将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.
【详解】
2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.
2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.
∴a﹣b=1-1=2.
故答案为:2.
【点睛】
中位数与众数的定义.
三、解答题(共8题,共72分)
17、(1)45°;(2)26°.
【解析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
【详解】
(1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
【点睛】
本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1)见解析;(2)2
【解析】
试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;
(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.
(1)连接OB.
∵OA=OB,∴∠OBA=∠BAC=30°.
∴∠AOB=80°-30°-30°=20°.
∵PA切⊙O于点A,∴OA⊥PA,
∴∠OAP=90°.
∵四边形的内角和为360°,
∴∠OBP=360°-90°-60°-20°=90°.
∴OB⊥PB.
又∵点B是⊙O上的一点,
∴PB是⊙O的切线.
(2)连接OP,
∵PA、PB是⊙O的切线,
∴PA=PB,∠OPA=∠OPB=,∠APB=30°.
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=1.
∴PA=OP2-OA2=2
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2.
考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质
点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
19、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:(I)解不等式(1),得x≥;
(II)解不等式(1),得x≤1;
(III)把不等式①和②的解集在数轴上表示出来:
(IV)原不等式组的解集为:≤x≤1.
故答案为x≥、x≤1、≤x≤1.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
20、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
【解析】
(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)构造二次函数,利用二次函数的性质即可解决问题.
【详解】
解:(1)∵直线y=2x+6经过点A(1,m),
∴m=2×1+6=8,
∴A(1,8),
∵反比例函数经过点A(1,8),
∴8=,
∴k=8,
∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.
21、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.
【解析】
(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
(2)根据平均数,中位数,众数的意义回答.
【详解】
解:
(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);
出现次数最多的是4万元,所以众数是4(万元);
因为第五,第六个数均是5万元,所以中位数是5(万元).
(2)今年每个销售人员统一的销售标准应是5万元.
理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.
【点睛】
本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.
22、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).
【解析】
试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.
试题解析:(1)△A1BC1如图所示.
(2)△A2B2C2如图所示,点C2的坐标为(-6,4).
23、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
24、(1)①3,1;②最小值为3;(1)
【解析】
(1)①根据点Q与点P之间的“直距”的定义计算即可;
②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
【详解】
解:(1)①如图1中,
观察图象可知DAO=1+1=3,DBO=1,
故答案为3,1.
②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
(ii)当点C在坐标轴上时(,),易得为3;
(ⅲ)当点C在第二象限时(),可得;
(ⅳ)当点C在第四象限时(),可得;
综上所述,当时,取得最小值为3;
(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.
【点睛】
本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
失分原因
第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
(1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
(1)不能想到由相似求出GO的值
江苏省邳州市市级名校2021-2022学年中考数学押题卷含解析: 这是一份江苏省邳州市市级名校2021-2022学年中考数学押题卷含解析,共23页。试卷主要包含了八边形的内角和为,一、单选题,已知抛物线y=等内容,欢迎下载使用。
黄金卷市级名校2021-2022学年中考数学押题试卷含解析: 这是一份黄金卷市级名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,计算36÷,下列各式等内容,欢迎下载使用。
昌都市市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份昌都市市级名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,-的立方根是等内容,欢迎下载使用。