2021-2022学年湖南省邵阳市武冈市第一中学中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.计算(1-)÷的结果是( )
A.x-1 B. C. D.
2.如果y=++3,那么yx的算术平方根是( )
A.2 B.3 C.9 D.±3
3.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
4.比1小2的数是( )
A. B. C. D.
5.不等式组的解集在数轴上表示为( )
A. B. C. D.
6.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
7.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
A. B.
C. D.
8.在-,,0,-2这四个数中,最小的数是( )
A. B. C.0 D.-2
9.在1、﹣1、3、﹣2这四个数中,最大的数是( )
A.1 B.﹣1 C.3 D.﹣2
10.一元二次方程3x2-6x+4=0根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根
二、填空题(共7小题,每小题3分,满分21分)
11.计算:3﹣(﹣2)=____.
12.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .
13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.
14.如图,直线 a∥b,直线 c 分别于 a,b 相交,∠1=50°,∠2=130°,则∠3 的度数为( )
A.50° B.80° C.100° D.130°
15.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 __________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)
16.函数y=的自变量x的取值范围为____________.
17.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.
三、解答题(共7小题,满分69分)
18.(10分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
滑行时间x/s | 0 | 1 | 2 | 3 | … |
滑行距离y/m | 0 | 4 | 12 | 24 | … |
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.
19.(5分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.
20.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.
21.(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
22.(10分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
(1)求证:点F是AC的中点;
(2)若∠A=30°,AF=,求图中阴影部分的面积.
23.(12分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
24.(14分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.
【详解】
解:原式=(-)÷=•=,
故选B.
【点睛】
本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.
2、B
【解析】
解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则yx=9,9的算术平方根是1.故选B.
3、B
【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
【详解】
∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
∴(a﹣b)2=a2﹣2ab+b2,
故选B.
【点睛】
本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
4、C
【解析】
1-2=-1,故选C
5、A
【解析】
根据不等式组的解集在数轴上表示的方法即可解答.
【详解】
∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.
故选A.
【点睛】
本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.
6、C
【解析】
∵四边形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中, ,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴ ,
∴AO2=OD•OP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OE•OP;故②错误;
在△CQF与△BPE中 ,
∴△CQF≌△BPE,
∴CF=BE,
∴DF=CE,
在△ADF与△DCE中, ,
∴△ADF≌△DCE,
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四边形OECF;故③正确;
∵BP=1,AB=3,
∴AP=4,
∵△AOP∽△DAP,
∴ ,
∴BE=,∴QE=,
∵△QOE∽△PAD,
∴ ,
∴QO=,OE=,
∴AO=5﹣QO=,
∴tan∠OAE==,故④正确,
故选C.
点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.
7、D
【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
8、D
【解析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
故最小的数为:﹣1.
故选D.
【点睛】
本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
9、C
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:根据有理数比较大小的方法,可得
-2<-1<1<1,
∴在1、-1、1、-2这四个数中,最大的数是1.
故选C.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
10、D
【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.
【详解】
∵a=3,b=-6,c=4,
∴∆=b2-4ac=(-6)2-4×3×4=-12<0,
∴方程3x2-6x+4=0没有实数根.
故选D.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
二、填空题(共7小题,每小题3分,满分21分)
11、2+2
【解析】
根据平面向量的加法法则计算即可.
【详解】
3﹣(﹣2)
=3﹣+2
=2+2,
故答案为:2+2,
【点睛】
本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.
12、
【解析】
【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.
【详解】袋子中有3个白球和2个红球,一共5个球,
所以从中任意摸出一个球是红球的概率为:,
故答案为.
【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.
13、4或1
【解析】
先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
【详解】
①如图:因为AC==2,
点A是斜边EF的中点,
所以EF=2AC=4,
②如图:
因为BD==5,
点D是斜边EF的中点,
所以EF=2BD=1,
综上所述,原直角三角形纸片的斜边长是4或1,
故答案是:4或1.
【点睛】
此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.
14、B
【解析】
根据平行线的性质即可解决问题
【详解】
∵a∥b,
∴∠1+∠3=∠2,
∵∠1=50°,∠2=130°,
∴∠3=80°, 故选B.
【点睛】
考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.
15、BE=DF
【解析】
可以添加的条件有BE=DF等;证明:
∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;
又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;
∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.
16、x≥-1
【解析】
试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
考点:函数自变量的取值范围.
17、3.308×1.
【解析】
正确用科学计数法表示即可.
【详解】
解:33080=3.308×1
【点睛】
科学记数法的表示形式为的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.
三、解答题(共7小题,满分69分)
18、(1)20s;(2)
【解析】
(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;
(2)根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:(1)∵该抛物线过点(0,0),
∴设抛物线解析式为y=ax2+bx,
将(1,4)、(2,12)代入,得:
,
解得:,
所以抛物线的解析式为y=2x2+2x,
当y=840时,2x2+2x=840,
解得:x=20(负值舍去),
即他需要20s才能到达终点;
(2)∵y=2x2+2x=2(x+)2﹣,
∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+)2﹣﹣5=2(x+)2﹣.
【点睛】
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.
19、(1)证明见解析;(2)BD=2.
【解析】
(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.
【详解】
(1)证明:连接OD,如图,
∵AB为⊙0的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙0的切线;
(2)∵∠B=∠C,∠CED=∠BDA=90°,
∴△DEC∽△ADB,
∴,
∴BD•CD=AB•CE,
∵BD=CD,
∴BD2=AB•CE,
∵⊙O半径为3,CE=2,
∴BD==2.
【点睛】
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.
20、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
21、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
22、(1)见解析;(2)
【解析】
(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;
(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.
【详解】
(1)证明:连接OD、CD,如图,
∵BC为直径,
∴∠BDC=90°,
∵∠ACB=90°,
∴AC为⊙O的切线,
∵EF为⊙O的切线,
∴FD=FC,
∴∠1=∠2,
∵∠1+∠A=90°,∠2+∠3=90°,
∴∠3=∠A,
∴FD=FA,
∴FC=FA,
∴点F是AC中点;
(2)解:在Rt△ACB中,AC=2AF=2,
而∠A=30°,
∴∠CBA=60°,BC=AC=2,
∵OB=OD,
∴△OBD为等边三角形,
∴∠BOD=60°,
∵EF为切线,
∴OD⊥EF,
在Rt△ODE中,DE=OD=,
∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
23、(1);(2)
【解析】
(1)根据可能性只有男孩或女孩,直接得到其概率;
(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
【详解】
解:(1)(1)第二个孩子是女孩的概率=;
故答案为;
(2)画树状图为:
共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
所以至少有一个孩子是女孩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
24、x=60
【解析】
设有x个客人,根据题意列出方程,解出方程即可得到答案.
【详解】
解:设有x个客人,则
解得:x=60;
∴有60个客人.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析: 这是一份湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是等内容,欢迎下载使用。
湖南省武冈市洞庭校2022年中考数学五模试卷含解析: 这是一份湖南省武冈市洞庭校2022年中考数学五模试卷含解析,共19页。试卷主要包含了不等式组的解集是,下列事件是必然事件的是,如图,已知点A等内容,欢迎下载使用。
湖南省邵阳市2022年中考数学五模试卷含解析: 这是一份湖南省邵阳市2022年中考数学五模试卷含解析,共19页。试卷主要包含了如图所示,,结论等内容,欢迎下载使用。