|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年江苏省常州市新北区中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省常州市新北区中考数学考试模拟冲刺卷含解析01
    2021-2022学年江苏省常州市新北区中考数学考试模拟冲刺卷含解析02
    2021-2022学年江苏省常州市新北区中考数学考试模拟冲刺卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省常州市新北区中考数学考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年江苏省常州市新北区中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知x+=3,则x2+=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    2.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=(  )

    A.90°-α B.90°+ α C. D.360°-α
    3.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
    ①二次函数的最大值为a+b+c;
    ②a﹣b+c<0;
    ③b2﹣4ac<0;
    ④当y>0时,﹣1<x<3,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    4.已知x+=3,则x2+=(  )
    A.7 B.9 C.11 D.8
    5.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是(  )

    A.8 B.﹣8 C.﹣12 D.12
    6.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是(  )

    A. B.
    C. D.
    7.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=(  )

    A.6 B.6 C.3 D.3
    8.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )

    A.∠NOQ=42° B.∠NOP=132°
    C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补
    9.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )

    A. B. C. D.4
    10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有(  )个〇.

    A.6055 B.6056 C.6057 D.6058
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.

    12.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.

    13.因式分解:_______________.
    14.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.

    15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.

    16.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .

    三、解答题(共8题,共72分)
    17.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.

    18.(8分)已知,关于 x的一元二次方程(k﹣1)x2+x+3=0 有实数根,求k的取值范围.
    19.(8分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.
    (1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;
    (2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.

    20.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
    (1)当时,求△PCQ的面积;
    (2)设⊙O的面积为s,求s与t的函数关系式;
    (3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.

    21.(8分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
    求反比例函数的表达式和一次函数表达式;
    若点C是y轴上一点,且,直接写出点C的坐标.

    22.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    23.(12分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
    (1)求一次函数的解析式;
    (2)求的面积。

    24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    2、C
    【解析】
    试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
    ∵PB和PC分别为∠ABC、∠BCD的平分线,
    ∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
    则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
    故选C.
    考点:1.多边形内角与外角2.三角形内角和定理.
    3、B
    【解析】
    分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
    详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
    ∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
    ②当x=﹣1时,a﹣b+c=0,故②错误;
    ③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
    ④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
    ∴A(3,0),
    故当y>0时,﹣1<x<3,故④正确.
    故选B.
    点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
    4、A
    【解析】
    根据完全平方公式即可求出答案.
    【详解】
    ∵(x+)2=x2+2+
    ∴9=2+x2+,
    ∴x2+=7,
    故选A.
    【点睛】
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
    5、D
    【解析】
    根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
    【详解】
    ∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
    故选D.
    【点睛】
    本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
    6、D
    【解析】
    摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.
    【详解】
    解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,
    ∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.
    故选D.
    【点睛】
    本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.
    7、A
    【解析】
    试题分析:根据垂径定理先求BC一半的长,再求BC的长.
    解:如图所示,设OA与BC相交于D点.

    ∵AB=OA=OB=6,
    ∴△OAB是等边三角形.
    又根据垂径定理可得,OA平分BC,
    利用勾股定理可得BD=
    所以BC=2BD=.
    故选A.
    点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
    8、C
    【解析】
    试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.
    考点:角的度量.
    9、B
    【解析】
    分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
    详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
    ∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
    故选B.
    点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
    10、D
    【解析】
    设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
    【详解】
    设第n个图形有an个〇(n为正整数),
    观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
    ∴an=1+3n(n为正整数),
    ∴a2019=1+3×2019=1.
    故选:D.
    【点睛】
    此题考查规律型:图形的变化,解题关键在于找到规律

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、20 cm.
    【解析】
    将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
    【详解】
    解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
    根据勾股定理,得(cm).

    故答案为:20cm.
    【点睛】
    本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
    12、.
    【解析】
    作DH⊥AE于H, 根据勾股定理求出AB, 根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.
    【详解】
    解:如图
    作DH⊥AE于H,
    AOB=, OA=2, OB=1,AB=,
    由旋转的性质可知
    OE=OB=1,DE=EF=AB=,
    可得△DHE≌△BOA,
    DH=OB=1,
    阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积
    ==,
    故答案:.
    【点睛】
    本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.
    13、x3(y+1)(y-1)
    【解析】
    先提取公因式x3,再利用平方差公式分解可得.
    【详解】
    解:原式=x3(y2-1)=x3(y+1)(y-1),
    故答案为x3(y+1)(y-1).
    【点睛】
    本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.
    14、71
    【解析】
    分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
    详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
    x2=4y2+52,
    ∵△BCD的周长是30,
    ∴x+2y+5=30
    则x=13,y=1.
    ∴这个风车的外围周长是:4(x+y)=4×19=71.
    故答案是:71.
    点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
    15、1或
    【解析】
    由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
    【详解】
    解:∵四边形ABCD是菱形,∠B=120°,
    ∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
    ∵EF∥AB,
    ∴四边形ABFE是平行四边形,
    ∴EF∥AB,
    ∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
    ∵DE=DG,
    ∴∠DEG=∠DGE=30°,
    ∴∠FEG=30°,
    当△EFG为等腰三角形时,
    当EF=EG时,EG=,
    如图1,

    过点D作DH⊥EG于H,
    ∴EH=EG=,
    在Rt△DEH中,DE==1,
    GE=GF时,如图2,

    过点G作GQ⊥EF,
    ∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
    ∴EG=1,
    过点D作DP⊥EG于P,
    ∴PE=EG=,
    同①的方法得,DE=,
    当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
    故答案为1或.
    【点睛】
    本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
    16、y=x-3
    【解析】
    【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.
    【详解】当x=2时,y==3,∴A(2,3),B(2,0),
    ∵y=kx过点 A(2,3),
    ∴3=2k,∴k=,
    ∴y=x,
    ∵直线y=x平移后经过点B,
    ∴设平移后的解析式为y=x+b,
    则有0=3+b,
    解得:b=-3,
    ∴平移后的解析式为:y=x-3,
    故答案为:y=x-3.
    【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.

    三、解答题(共8题,共72分)
    17、木竿PQ的长度为3.35米.
    【解析】
    过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
    试题解析:
    【详解】
    解:过N点作ND⊥PQ于D,

    则四边形DPMN为矩形,
    ∴DN=PM=1.8m,DP=MN=1.1m,
    ∴,
    ∴QD==2.25,
    ∴PQ=QD+DP= 2.25+1.1=3.35(m).
    答:木竿PQ的长度为3.35米.
    【点睛】
    本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
    18、0≤k≤且 k≠1.
    【解析】
    根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围.
    【详解】
    解:∵关于 x 的一元二次方程(k﹣1)x2+x+3=0 有实数根,
    ∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,
    解得:0≤k≤且 k≠1.
    ∴k 的取值范围为 0≤k≤且 k≠1.
    【点睛】
    本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    19、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).
    【解析】
    (1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;
    (2)根据旋转变换的性质、扇形面积公式计算.
    【详解】
    (1)如图所示:

    A1(﹣1,﹣2),B1(2,﹣1);
    (2)将△AOB绕点O顺时针旋转90°的△A2OB2如图所示:


    线段OB扫过的面积为:
    【点睛】
    此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.
    20、(1);(2)①;②;(3)t的值为或1或.
    【解析】
    (1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
    (2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
    (3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
    【详解】
    (1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
    CP=t=,
    ∵∠ACB=90°,
    ∴S△PCQ=CQ•PC=×2×=;
    (2)分两种情况:
    ①当Q在边AC上运动时,0<t≤2,如图1,
    由题意得:CQ=4t,CP=t,
    由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
    ∴S=π=;
    ②当Q在边AB上运动时,2<t<4如图2,
    设⊙O与AB的另一个交点为D,连接PD,
    ∵CP=t,AC+AQ=4t,
    ∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
    ∵PQ为⊙O的直径,
    ∴∠PDQ=90°,
    Rt△ACB中,AC=2cm,AB=4cm,
    ∴∠B=30°,
    Rt△PDB中,PD=PB=,
    ∴BD=,
    ∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
    ∴PQ==,
    ∴S=π==;
    (3)分三种情况:
    ①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
    ∴OE⊥AC,
    ∵AQ=4t﹣2,
    Rt△AFQ中,∠AQF=30°,
    ∴AF=2t﹣1,
    ∴FQ=(2t﹣1),
    ∵FQ∥OE∥PC,OQ=OP,
    ∴EF=CE,
    ∴FQ+PC=2OE=PQ,
    ∴(2t﹣1)+t=,
    解得:t=或﹣(舍);
    ②当⊙O与BC相切时,如图4,
    此时PQ⊥BC,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=1;
    ③当⊙O与BA相切时,如图5,
    此时PQ⊥BA,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=,
    综上所述,t的值为或1或.

    【点睛】
    本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
    21、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
    【解析】
    (1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
    (2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
    【详解】
    (1)∵双曲线过,将代入,解得:.
    ∴所求反比例函数表达式为:.
    ∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
    (2)由,可得:,∴.
    又∵,∴或,∴,或,.
    【点睛】
    本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
    22、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    23、(1);(2)6.
    【解析】
    (1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;
    (2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.
    【详解】
    (1)当x=2时,=4,
    当y=-2时,-2=,x=-4,
    所以点A(2,4),点B(-4,-2),
    将A,B两点分别代入一次函数解析式,得

    解得:,
    所以,一次函数解析式为;
    (2)令直线AB与y轴交点为D,则OD=b=2,
    .
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.
    24、 (1)证明见解析;(2) △APQ是等边三角形.
    【解析】
    (1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
    (2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
    【详解】
    证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
    在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
    (2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
    ∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
    ∴△APQ是等边三角形.
    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.

    相关试卷

    江苏省盐城响水县联考2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省盐城响水县联考2021-2022学年中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,的相反数是,下列图形中,主视图为①的是等内容,欢迎下载使用。

    江苏省江都区丁伙中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省江都区丁伙中学2021-2022学年中考数学考试模拟冲刺卷含解析,共26页。试卷主要包含了如图,在平面直角坐标系中,A等内容,欢迎下载使用。

    2021-2022学年江西专版市级名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年江西专版市级名校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔,一组数据,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map