2021-2022学年嘉兴市秀洲区重点达标名校中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下面运算正确的是( )
A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
2.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )
A.a+b>0 B.ab >0 C. D.
3.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为( )
A. B. C.1 D.
4.一个几何体的三视图如图所示,则该几何体的形状可能是( )
A. B.
C. D.
5.已知x﹣2y=3,那么代数式3﹣2x+4y的值是( )
A.﹣3 B.0 C.6 D.9
6.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
7.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为( )kg.
A.180 B.200 C.240 D.300
8.若关于x的不等式组只有5个整数解,则a的取值范围( )
A. B. C. D.
9.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是( )
A.2 B.3 C.4 D.5
10.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1 B.3 C.4 D.5
二、填空题(共7小题,每小题3分,满分21分)
11.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.
12.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.
13.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.
14.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
15.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
16.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.
17.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积
为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;
取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;
如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.
三、解答题(共7小题,满分69分)
18.(10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
19.(5分).
20.(8分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.
21.(10分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
(1)求 x 的范围;
(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
22.(10分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
23.(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)B点坐标为 ,并求抛物线的解析式;
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,直接写出此时点P的坐标.
24.(14分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
【详解】
解:A,,故此选项错误;
B,,故此选项错误;
C,,故此选项错误;
D,,故此选项正确.
所以D选项是正确的.
【点睛】
灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
2、C
【解析】
本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.
【详解】
A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;
B、因为b<0<a,所以ab<0,故选项B错误;
C、因为b<-1<0<a<1,所以+>0,故选项C正确;
D、因为b<-1<0<a<1,所以->0,故选项D错误.
故选C.
【点睛】
本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.
3、B
【解析】
由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四边形ABDE是平行四边形,
∴AB=DE,
∴AB=DE=CD,即D为CE中点,
∵EF⊥BC,
∴∠EFC=90°,
∵AB∥CD,
∴∠ECF=∠ABC,
∴tan∠ECF=tan∠ABC=,
在Rt△CFE中,EF=,tan∠ECF===,
∴CF=,
根据勾股定理得,CE==,
∴AB=CE=,
故选B.
【点睛】
本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
4、D
【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
考点:由三视图判断几何体.
视频
5、A
【解析】
解:∵x﹣2y=3,
∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;
故选A.
6、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
7、B
【解析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
【详解】
解:设小李所进甜瓜的数量为,根据题意得:
,
解得:,
经检验是原方程的解.
答:小李所进甜瓜的数量为200kg.
故选:B.
【点睛】
本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
8、A
【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
【详解】
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
9、A
【解析】
试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.
考点:垂径定理;勾股定理.
10、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣1
【解析】
根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.
【详解】
解:∵A(﹣3,4),
∴OC==5,
∴CB=OC=5,
则点B的横坐标为﹣3﹣5=﹣8,
故B的坐标为:(﹣8,4),
将点B的坐标代入y=得,4=,
解得:k=﹣1.
故答案为:﹣1.
12、10, 1, 1
【解析】
作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.
【详解】
解:作CD⊥x轴于D,CE⊥OB于E,如图所示:
由题意得:OA=1,OB=8,
∵∠AOB=90°,
∴AB==10;
∵点C的坐标(﹣2,4),
∴OC==1,OE=4,
∴BE=OB﹣OE=4,
∴OE=BE,
∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,
∴△OMN的面积S=×3×4=1;
故答案为:10,1,1.
【点睛】
本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.
13、④
【解析】
根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项错误;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
故答案是:④.
【点睛】
此题考查运算的定义,解题关键在于理解题意的运算法则.
14、
【解析】
试题解析:根据题意得,这一组数的第个数为:
故答案为
点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
15、1.738×1
【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
16、
【解析】
先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.
【详解】
解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,
∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.
故答案为:.
【点睛】
本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.
17、
【解析】
∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的,
∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的.
同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,
∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2);(1)DE的长分别为或1.
【解析】
(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
【详解】
解:(1)∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图1,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=1x,则HE=1x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+1x=8,
解得x=1,
∴DE=1x=1,
综上所述,DE的长分别为或1.
【点睛】
本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
19、5﹣.
【解析】
根据特殊角的三角函数值进行计算即可.
【详解】
原式=
=3﹣+4﹣2
=5﹣.
【点睛】
本题考查了特殊角的三角函数值,是基础题目比较简单.
20、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.
【解析】
(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;
(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,根据两种耗材的总价相等列方程求解即可.
【详解】
(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.
解方程,得.
经检验,是原方程的解,且符合题意
.
答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.
(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得:
整理,得
解方程,得,(舍去).
的值为95.
【点睛】
本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.
21、(1)0<x≤200,且 x是整数(2)175
【解析】
(1)根据商场的规定确定出x的范围即可;
(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
【详解】
(1)根据题意得:0<x≤200,且x为整数;
(2)设小王原计划购买x个纪念品,
根据题意得:,
整理得:5x+175=6x,
解得:x=175,
经检验x=175是分式方程的解,且满足题意,
则小王原计划购买175个纪念品.
【点睛】
此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
22、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
23、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().
【解析】
(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.
(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.
(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.
【详解】
解:(1)∵B(4,m)在直线y=x+1上,
∴m=4+1=6,
∴B(4,6),
故答案为(4,6);
∵A(,),B(4,6)在抛物线y=ax1+bx+6上,
∴,解得,
∴抛物线的解析式为y=1x1﹣8x+6;
(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),
∴PC=(n+1)﹣(1n1﹣8n+6),
=﹣1n1+9n﹣4,
=﹣1(n﹣)1+,
∵PC>0,
∴当n=时,线段PC最大且为.
(3)∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
∴MN=AN=,
∴OM=ON+MN=+=3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则:,解得,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=1x1﹣8x+6 ②
联立①②式,
解得:或(与点A重合,舍去),
∴C(3,0),即点C、M点重合.
当x=3时,y=x+1=5,
∴P1(3,5);
iii)若点C为直角顶点,则∠ACP=90°.
∵y=1x1﹣8x+6=1(x﹣1)1﹣1,
∴抛物线的对称轴为直线x=1.
如图1,作点A(,)关于对称轴x=1的对称点C,
则点C在抛物线上,且C(,).
当x=时,y=x+1=.
∴P1(,).
∵点P1(3,5)、P1(,)均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).
【点睛】
本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.
24、(1);(2)见解析;(3)
【解析】
(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
【详解】
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴∠BAD=∠CAD,
∵DE⊥AC,
∴∠AFD=90°,
∴∠ADF=∠B,
∴tan∠ADF=tan∠B==;
(2)连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵∠OAD=∠CAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)设AD=x,则BD=2x,
∴AB=x=10,
∴x=2,
∴AD=2,
同理得:AF=2,DF=4,
∵AF∥OD,
∴△AFE∽△ODE,
∴,
∴=,
∴EF=.
【点睛】
本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
重庆开州区重点达标名校2021-2022学年中考数学全真模拟试题含解析: 这是一份重庆开州区重点达标名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式,最简二次根式是,﹣2的绝对值是,下列解方程去分母正确的是等内容,欢迎下载使用。
浙江省嘉兴市海盐县重点达标名校2022年中考数学全真模拟试题含解析: 这是一份浙江省嘉兴市海盐县重点达标名校2022年中考数学全真模拟试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,方程x等内容,欢迎下载使用。
2021-2022学年浙江省义乌地区重点达标名校中考数学全真模拟试卷含解析: 这是一份2021-2022学年浙江省义乌地区重点达标名校中考数学全真模拟试卷含解析,共23页。试卷主要包含了关于x的方程等内容,欢迎下载使用。