2021-2022学年吉林省镇赉县镇赉镇中学中考数学押题试卷含解析
展开
这是一份2021-2022学年吉林省镇赉县镇赉镇中学中考数学押题试卷含解析,共23页。试卷主要包含了下列各数中,为无理数的是,一个正比例函数的图象过点,若2<<3,则a的值可以是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p
2.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是( )
A.点A与点B B.点A与点D C.点B与点D D.点B与点C
3.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )
A. B. C. D.
4.下列各数中,为无理数的是( )
A. B. C. D.
5.一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A. B. C. D.
6.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )
A.280×103 B.28×104 C.2.8×105 D.0.28×106
7.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )
A.350 B.351 C.356 D.358
8.若2<<3,则a的值可以是( )
A.﹣7 B. C. D.12
9.关于反比例函数y=,下列说法中错误的是( )
A.它的图象是双曲线
B.它的图象在第一、三象限
C.y的值随x的值增大而减小
D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
10.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100° B.105° C.110° D.115°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.
12.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
13.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):
如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
14.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.
15.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是_____.
16.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.
三、解答题(共8题,共72分)
17.(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)请添加一个条件使四边形BEDF为菱形.
18.(8分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。
(1)当t=时,求DP的长
(2)在点P运动过程中,依照条件所形成的△OPD面积为S
①当t>0时,求S与t之间的函数关系式
②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.
19.(8分)解不等式组:,并将它的解集在数轴上表示出来.
20.(8分)阅读材料,解答问题.
材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”
问题:
(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);
(2)猜想四边形Pn﹣1PnPn+1Pn+2的面积,并说明理由(利用图2);
(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn﹣1PnPn+1Pn+2的面积(直接写出答案).
21.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.
22.(10分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
23.(12分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
(1)说明四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
24. (1)如图,四边形为正方形,,那么与相等吗?为什么?
(2)如图,在中,,,为边的中点,于点,交于,求的值
(3)如图,中,,为边的中点,于点,交于,若,,求.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.
【详解】
解:A.﹣5x﹣2x=﹣7x,故此选项错误;
B.(a+3)2=a2+6a+9,故此选项错误;
C.(﹣a3)2=a6,故此选项错误;
D.a2p÷a﹣p=a3p,正确.
故选D.
【点睛】
本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.
2、A
【解析】
试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
故选A.
考点:1.倒数的定义;2.数轴.
3、C
【解析】
根据A点坐标即可建立平面直角坐标.
【详解】
解:由A(0,2),B(1,1)可知原点的位置,
建立平面直角坐标系,如图,
∴C(2,-1)
故选:C.
【点睛】
本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
4、D
【解析】
A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,
故选D.
5、A
【解析】
利用待定系数法即可求解.
【详解】
设函数的解析式是y=kx,
根据题意得:2k=﹣3,解得:k=.
∴ 函数的解析式是:.
故选A.
6、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将280000用科学记数法表示为2.8×1.故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、B
【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
【详解】
解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
设小昱所写的第n个数为101,
根据题意得:101=1+(n-1)×2,
整理得:2(n-1)=100,即n-1=50,
解得:n=51,
则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
故选B.
【点睛】
此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
8、C
【解析】
根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.
【详解】
解:∵2<<3,
∴4<a-2<9,
∴6<a<1.
又a-2≥0,即a≥2.
∴a的取值范围是6<a<1.
观察选项,只有选项C符合题意.
故选C.
【点睛】
考查了估算无理数的大小,估算无理数大小要用夹逼法.
9、C
【解析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
【详解】
A.反比例函数的图像是双曲线,正确;
B.k=2>0,图象位于一、三象限,正确;
C.在每一象限内,y的值随x的增大而减小,错误;
D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
故选C.
【点睛】
本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
10、B
【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
【详解】
∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.
【点睛】
本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(128,0)
【解析】
∵点A1坐标为(1,0),且B1A1⊥x轴,∴B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A8的坐标.
【详解】
点坐标为(1,0),
轴
点的横坐标为1,且点在直线上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案为 .
【点睛】
本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.
12、y=﹣1x+1.
【解析】
由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
【详解】
∵点P(1,2)关于x轴的对称点为P′,
∴P′(1,﹣2),
∵P′在直线y=kx+3上,
∴﹣2=k+3,解得:k=﹣1,
则y=﹣1x+3,
∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
故答案为y=﹣1x+1.
考点:一次函数图象与几何变换.
13、乙 乙的比赛成绩比较稳定.
【解析】
观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
【详解】
观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
故答案为乙,乙的比赛成绩比较稳定.
【点睛】
本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
14、1
【解析】
在△AGF和△ACF中,
,
∴△AGF≌△ACF,
∴AG=AC=4,GF=CF,
则BG=AB−AG=6−4=2.
又∵BE=CE,
∴EF是△BCG的中位线,
∴EF=BG=1.
故答案是:1.
15、1
【解析】
根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案.
【详解】
运动员张华测试成绩的众数是1.
故答案为1.
【点睛】
本题主要考查了众数,关键是掌握众数定义.
16、2
【解析】
侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.
【详解】
设母线长为x,根据题意得
2πx÷2=2π×5,
解得x=1.
故答案为2.
【点睛】
本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.
三、解答题(共8题,共72分)
17、见解析
【解析】
(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
【详解】
(1)∵四边形ABCD是平行四边形,O是BD的中点,
∴AB∥DC,OB=OD,
∴∠OBE=∠ODF,
又∵∠BOE=∠DOF,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)EF⊥BD.
∵四边形BEDF是平行四边形,
∵EF⊥BD,
∴平行四边形BEDF是菱形.
【点睛】
本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.
18、(1)DP=;(2)①;②.
【解析】
(1)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;
(2)①先求出GH= 2,进而求出DG,再得出DH,即可得出结论;
②分两种情况,利用三角形的面积建立方程求解即可得出结论.
【详解】
解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋转得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等边三角形,
∴DP=AP,
∵ ,
∴,
∴;
(2)①当t>0时,如图1,BD=OP=t,
过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,
∵△OAB为等边三角形,BE⊥y轴,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD•sin60°= ,
∵GH=OE=2,
∴ ,
∴ ;
②当t≤0时,分两种情况:
∵点D在x轴上时,如图2
在Rt△ABD中,,
(1)当 时,如图3,BD=OP=-t,,
∴,
∴,
∴或,
∴ 或,
(2)当 时,如图4,
BD=OP=-t,,
∴,
∴
∴或(舍)
∴ .
【点睛】
此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键.
19、-1≤x
相关试卷
这是一份2023-2024学年吉林省白城市镇赉县七年级(上)期末数学试卷(含详细答案解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年吉林省白城市镇赉县七年级(上)期末数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年吉林省白城市镇赉县八年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。