2021-2022学年江苏省建湖县重点达标名校中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 ( )
A.2 B.2 C.4 D.3
2.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
3.下列方程中有实数解的是( )
A.x4+16=0 B.x2﹣x+1=0
C. D.
4.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
5.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )
A.BO=OH B.DF=CE C.DH=CG D.AB=AE
6.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )
A.(1,4) B.(7,4) C.(6,4) D.(8,3)
7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
8.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )
A. B. C. D.
9.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )
A.3 B.6 C.9 D.36
10.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )
A.12 B.11 C.10 D.9
11.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )
A.1个 B.2个 C.3个 D.4个
12.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( )
A.2π B.4π C.6π D.8π
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
14.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
15.因式分解:______.
16.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_____.
17.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.
18.计算:.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
20.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
21.(6分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.
22.(8分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.
23.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?
24.(10分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
25.(10分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
26.(12分)计算:.
27.(12分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
连接CC′,
∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
∴∠ADC′=∠ADC=30°,CD=C′D,
∴∠CDC′=∠ADC+∠ADC′=60°,
∴△DCC′是等边三角形,
∴∠DC′C=60°,
∵在△ABC中,AD是BC边的中线,
即BD=CD,
∴C′D=BD,
∴∠DBC′=∠DC′B=∠CDC′=30°,
∴∠BC′C=∠DC′B+∠DC′C=90°,
∵BC=4,
∴BC′=BC•cos∠DBC′=4×=2,
故选A.
【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
2、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
3、C
【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
【详解】
A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
C.x=﹣1是方程的根;
D.当x=1时,分母x2-1=0,无实数根.
故选:C.
【点睛】
本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
4、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
5、D
【解析】
解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
同理可证EC=CG.
∵DH=CG,∴DF=CE,故B正确.
无法证明AE=AB,故选D.
6、B
【解析】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
7、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
8、B
【解析】
由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
【详解】
∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四边形ABCD为矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF与△CDF中,
,
∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四边形ABCD为矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
设FA=x,则FC=x,FD=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
则FD=6-x=.
故选B.
【点睛】
考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
9、C
【解析】
设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.
【详解】
设抛物线解析式为y=-(x-m)(x-m+6),
∵y=-[x2-2(m-3)x+(m-3)2-1]
=-[x-(m-3)]2+1,
∴抛物线的顶点坐标为(m-3,1),
∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,
即n=1.
故选C.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
10、A
【解析】
根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.
【详解】
∵一个正多边形的每个内角为150°,
∴这个正多边形的每个外角=180°﹣150°=30°,
∴这个正多边形的边数==1.
故选:A.
【点睛】
本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.
11、C
【解析】
利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①②正确;
∵△AEP≌△CFP,同理可证△APF≌△BPE,
∴△EFP是等腰直角三角形,故③错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
12、B
【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
【详解】
在△ABC中,依据勾股定理可知AB==8,
∵两等圆⊙A,⊙B外切,
∴两圆的半径均为4,
∵∠A+∠B=90°,
∴阴影部分的面积==4π.
故选:B.
【点睛】
本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-2
【解析】
试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
考点:一次函数图象与系数的关系.
14、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
15、
【解析】
先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【详解】
xy1+1xy+x,
=x(y1+1y+1),
=x(y+1)1.
故答案为:x(y+1)1.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
16、
【解析】
由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.
【详解】
∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴
∴S阴影=S△OAB-S扇形OMN=
故答案为
【点睛】
考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.
17、2
【解析】
试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
考点:不等式的性质
点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
18、
【解析】
此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
.
【点睛】
此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)1.
【解析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;
(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.
【详解】
解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,
∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,
∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,
∴AB=AC;
(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,
∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,
则⊙O的半径为1.
【点睛】
本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.
20、(1)见解析;(2)75﹣a.
【解析】
(1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;
(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案
【详解】
(1)证明:连接DC,
∵BC是⊙O直径,
∴∠BDC=90°,
∴∠ADC=90°,
∵∠C=90°,BC为直径,
∴AC切⊙O于C,
∵过点D作⊙O的切线DE交AC于点E,
∴DE=CE,
∴∠EDC=∠ECD,
∵∠ACB=∠ADC=90°,
∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
∴∠A=∠ADE;
(2)解:连接CD、OD、OE,
∵DE=10,DE=CE,
∴CE=10,
∵∠A=∠ADE,
∴AE=DE=10,
∴AC=20,
∵∠ACB=90°,AB=25,
∴由勾股定理得:BC===15,
∴CO=OD=,
∵的长度是a,
∴扇形DOC的面积是×a×=a,
∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.
【点睛】
本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
21、【小题1】 见解析
【小题2】 见解析
【小题3】
【解析】
证明:(1)连接OF
∴FH切·O于点F
∴OF⊥FH ………………………… 1分
∵BC | | FH
∴OF⊥BC ………………………… 2分
∴BF="CF" ………………………… 3分
∴∠BAF=∠CAF
即AF平分∠BAC…………………4分
(2) ∵∠CAF=∠CBF
又∠CAF=∠BAF
∴∠CBF=∠BAF ………………………… 6分
∵BD平分∠ABC
∴∠ABD=∠CBD
∴∠BAF+∠ABD=∠CBF+∠CBD
即∠FBD=∠FDB………………………… 7分
∴BF="DF" ………………………… 8分
(3) ∵∠BFE=∠AFB ∠FBE=∠FAB
∴ΔBEF∽ΔABF………………………… 9分
∴即BF2=EF·AF …………………… 10分
∵EF=4 DE=3 ∴BF="DF" =4+3=7
AF=AD+7
即4(AD+7)=49 解得AD=
22、 (1)见解析;(2).
【解析】
(1)画树状图列举出所有情况;
(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.
【详解】
解:(1)根据题意,可以画出如下的树形图:
从树形图可以看出,两次摸球出现的所有可能结果共有6种.
(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
∴摸出的两个小球号码之和等于4的概率为=.
【点睛】
本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.
23、每台电脑0.5万元;每台电子白板1.5万元.
【解析】
先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.
【详解】
设每台电脑x万元,每台电子白板y万元.
根据题意,得:
解得,
答:每台电脑0.5万元,每台电子白板1.5万元.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.
24、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
【解析】
(1)根据题意应用分式方程即可;
(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
【详解】
(1)设型丝绸的进价为元,则型丝绸的进价为元,
根据题意得:,
解得,
经检验,为原方程的解,
,
答:一件型、型丝绸的进价分别为500元,400元.
(2)①根据题意得:
,
的取值范围为:,
②设销售这批丝绸的利润为,
根据题意得:
,
,
(Ⅰ)当时,,
时,
销售这批丝绸的最大利润;
(Ⅱ)当时,,
销售这批丝绸的最大利润;
(Ⅲ)当时,
当时,
销售这批丝绸的最大利润.
综上所述:.
【点睛】
本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
25、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).
【解析】
(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.
(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:
①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.
(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.
【详解】
解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);
∵OC=1OA,
∴C(0,1);
依题意有:,
解得;
∴y=﹣x2+2x+1.
(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);
设P2(x,y),
∵C(0,1),P(2,1),
∴CP=2,
∵D(1,4),
∴CD=<2,
②由①此时CD⊥PD,
根据垂线段最短可得,PC不可能与CD相等;
②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2
∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2
将y=﹣x2+2x+1代入可得:,
∴ ;
∴P2(,).
综上所述,P(2,1)或(,).
(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);
①若Q是直角顶点,由对称性可直接得Q1(1,0);
②若N是直角顶点,且M、N在x轴上方时;
设Q2(x,0)(x<1),
∴MN=2Q1O2=2(1﹣x),
∵△Q2MN为等腰直角三角形;
∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);
∵x<1,
∴Q2(,0);
由对称性可得Q1(,0);
③若N是直角顶点,且M、N在x轴下方时;
同理设Q4(x,y),(x<1)
∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),
∵y为负,
∴﹣y=2(1﹣x),
∴﹣(﹣x2+2x+1)=2(1﹣x),
∵x<1,
∴x=﹣,
∴Q4(-,0);
由对称性可得Q5(+2,0).
【点睛】
本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.
26、
【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
【详解】
原式=9﹣2+1﹣2=.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
27、证明过程见解析
【解析】
由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.
【详解】
∵∠BAE=∠BCE=∠ACD=90°,
∴∠5+∠4=∠4+∠3,
∴∠5=∠3,且∠B+∠CEA=180°,
又∠7+∠CEA=180°,
∴∠B=∠7,
在△ABC和△DEC中 ,
∴△ABC≌△DEC(ASA).
江苏省金坛市重点达标名校2021-2022学年中考数学四模试卷含解析: 这是一份江苏省金坛市重点达标名校2021-2022学年中考数学四模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,如果,下列运算正确的是等内容,欢迎下载使用。
江苏省滨淮重点达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份江苏省滨淮重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了下列方程中,两根之和为2的是,下列运算正确的是,若,则的值为等内容,欢迎下载使用。
2021-2022学年江苏省无锡市惠山区重点达标名校中考三模数学试题含解析: 这是一份2021-2022学年江苏省无锡市惠山区重点达标名校中考三模数学试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,尺规作图要求,若分式的值为零,则x的值是等内容,欢迎下载使用。