2021-2022学年江苏省苏州市市辖区市级名校中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
A.且 B. C.且 D.
2.已知函数的图象与x轴有交点.则的取值范围是( )
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
3.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )
A.70° B.60° C.55° D.50°
4.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
A.1,2 B.1,3
C.4,2 D.4,3
5.如图所示的几何体,它的左视图与俯视图都正确的是( )
A. B. C. D.
6.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20 B.15 C.10 D.5
8.如图是某几何体的三视图,则该几何体的全面积等于( )
A.112 B.136 C.124 D.84
9.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )
A. B. C. D.
10.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为( )
A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×108
二、填空题(共7小题,每小题3分,满分21分)
11.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
12.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_____.
13.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
14.已知,,,是成比例的线段,其中,,,则_______.
15.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC= 度.
16.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .
17.分解因式:4m2﹣16n2=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,.
(1)求证:直线为的切线;
(2)求证:;
(3)若,,求的长.
19.(5分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
20.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
21.(10分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
(1)求抛物线的解析式;
(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
22.(10分)如图:求作一点P,使,并且使点P到的两边的距离相等.
23.(12分)(1)计算: ;
(2)解不等式组 :
24.(14分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
【详解】
∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
故选B.
【点睛】
本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
2、B
【解析】
试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
3、A
【解析】
试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
考点:平行线的性质.
4、A
【解析】
试题分析:通过猜想得出数据,再代入看看是否符合即可.
解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,
30+4×3=42,
故选A.
点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.
5、D
【解析】
试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
考点:D.
6、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
7、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
8、B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理
全面积为:
故该几何体的全面积等于1.
故选B.
9、A
【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
【详解】
解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC=MN•AC=AM•MC,
∴MN=
= .
故选A.
【点睛】
综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
10、C
【解析】
科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
【详解】
42.4亿=4240000000,
用科学记数法表示为:4.24×1.
故选C.
【点睛】
考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1.06×104
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10600=1.06×104,
故答案为:1.06×104
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、×()2
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
【详解】
解:∵∠B1C1O=60°,C1O=,
∴B1C1=1,∠D1C1E1=30°,
∵sin∠D1C1E1=,
∴D1E1=,
∵B1C1∥B2C2∥B3C3∥…
∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…
∴B2C2=,B3C3=.
故正方形AnBnCnDn的边长=()n-1.
∴B2018C2018=()2.
∴D2018E2018=×()2,
∴D的纵坐标为×()2,
故答案为×()2.
【点睛】
此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键
13、15π
【解析】
根据圆的面积公式、扇形的面积公式计算即可.
【详解】
圆锥的母线长==5,,
圆锥底面圆的面积=9π
圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,
∴圆锥的侧面展开图的面积=×6π×5=15π,
【点睛】
本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.
14、
【解析】
如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.
【详解】
已知a,b,c,d是成比例线段,
根据比例线段的定义得:ad=cb,
代入a=3,b=2,c=6,
解得:d=4,
则d=4cm.
故答案为:4
【点睛】
本题主要考查比例线段的定义.要注意考虑问题要全面.
15、20
【解析】
解:连接OB,
∵⊙O的直径CD垂直于AB,
∴=,
∴∠BOC=∠AOC=40°,
∴∠BDC=∠AOC=×40°=20°
16、9
【解析】
解:360÷40=9,即这个多边形的边数是9
17、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)证明见解析;(3)1.
【解析】
(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;
(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
【详解】
(1)连接OB,
∵PB是⊙O的切线,
∴∠PBO=90°.
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB.
又∵PO=PO,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴直线PA为⊙O的切线.
(2)由(1)可知,,
,
,
=90,
,
,
,即,
是直径,
是半径
,
,
,
整理得;
(3)是中点,是中点,
是的中位线,
,
,
,
是直角三角形,
在中,,
,
,
,
,则,
、是半径,
,
在中,,,
由勾股定理得:
,即,
解得:或(舍去),
,
.
【点睛】
本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.
19、(1)见解析;(2)
【解析】
分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
详解:
(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
20、 (1)2;(2) x﹣y.
【解析】
分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
详解:(1)原式=3﹣4﹣2×+4=2;
(2)原式=•=x﹣y.
点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
21、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
【解析】
(1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
得n=3或n=﹣2(舍去).求得P点坐标.
【详解】
解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .
∴
解得,x1=2.
∴B(2,5).
又∵
∴b=.
∴抛物线解析式为y= ,
(1)如图1,
∵B(2,5),C(5,1).
∴直线BC的解析式为y=﹣x+1.
由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
由S△CBF=EF•OB,
∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
又∵S△CDB=BD•OC=×(2﹣)×1=
∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
当m=1时,S四边形CDBF最大,为.
此时,E点坐标为(1,1).
(3)存在.
如图1,
由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
过N作NO⊥x轴于点P(n,5).
∴NP=﹣n1+n+1,PG=n﹣1.
又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
AB1=51=15.
∴AC1+BC1=AB1.
∴△ABC为直角三角形.
当△ABC∽△GNP,且时,
即,
整理得,n1﹣1n﹣6=5.
解得,n=1+ 或n=1﹣(舍去).
此时P点坐标为(1+,5).
当△ABC∽△GNP,且时,
即,
整理得,n1+n﹣11=5.
解得,n=3或n=﹣2(舍去).
此时P点坐标为(3,5).
综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
【点睛】
本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
22、见解析
【解析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.
【详解】
如图所示:P点即为所求.
【点睛】
本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.
23、(1);(2).
【解析】
(1)根据幂的运算与实数的运算性质计算即可.
(2)先整理为最简形式,再解每一个不等式,最后求其解集.
【详解】
(1)解:原式=
=
(2)解不等式①,得 .
解不等式②,得 .
∴ 原不等式组的解集为
【点睛】
本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.
24、(1)见解析;(2)1
【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
【详解】
(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
又∵EF⊥AC,∴平行四边形AECF是菱形;
(2)设AF=x.
∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
【点睛】
本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
郑州市级名校2022-2023学年中考数学适应性模拟试题含解析: 这是一份郑州市级名校2022-2023学年中考数学适应性模拟试题含解析,共20页。
苏州市吴中区市级名校2021-2022学年中考数学模拟试题含解析: 这是一份苏州市吴中区市级名校2021-2022学年中考数学模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是等内容,欢迎下载使用。
山东东营市市级名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份山东东营市市级名校2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。