年终活动
搜索
    上传资料 赚现金

    2021-2022学年江苏省苏州市园区一中学中考联考数学试题含解析

    2021-2022学年江苏省苏州市园区一中学中考联考数学试题含解析第1页
    2021-2022学年江苏省苏州市园区一中学中考联考数学试题含解析第2页
    2021-2022学年江苏省苏州市园区一中学中考联考数学试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省苏州市园区一中学中考联考数学试题含解析

    展开

    这是一份2021-2022学年江苏省苏州市园区一中学中考联考数学试题含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是(    ).
    A. B.- C.- D.
    2.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是(  )

    A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570
    3.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是(  )

    A. B.
    C. D.
    4.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )

    A.4.5cm B.5.5cm C.6.5cm D.7cm
    5.下列运算正确的是( )
    A.(a2)3 =a5 B. C.(3ab)2=6a2b2 D.a6÷a3 =a2
    6.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( )

    A. B. C. D.
    7.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于(  )

    A.80° B.85° C.100° D.170°
    8.如图,,且.、是上两点,,.若,,,则的长为( )

    A. B. C. D.
    9.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
    A.—7℃ B.7℃ C.—1℃ D.1℃
    10.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )

    A.10 B.9 C.8 D.7
    11.下列计算正确的是(  )
    A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6
    C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy
    12.下列计算正确的是(  )
    A.a4+a5=a9 B.(2a2b3)2=4a4b6
    C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2; ⑤3a+c<1.其中,正确结论的序号是________________.

    14.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.

    15.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.

    16.图中是两个全等的正五边形,则∠α=______.

    17.若正六边形的边长为2,则此正六边形的边心距为______.
    18.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:该公司“高级技工”有   名;所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    20.(6分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.
    (1)当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
    (2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

    21.(6分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
    (1)甲、乙两种材料每千克分别是多少元?
    (2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
    (3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
    22.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地   千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

    23.(8分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
    (1)求二次函数的表达式;
    (2)当﹣<x<1时,请求出y的取值范围;
    (3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.

    24.(10分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.

    25.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
    (1)求该抛物线的解析式;
    (2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
    (3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
    (4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

    26.(12分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
    27.(12分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.
    (1)直接写出点A的坐标;
    (2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.
    ①当∠BAC=90°时.求抛物线G2的表达式;
    ②若60°<∠BAC<120°,直接写出m的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.
    详解:∵α、β是一元二次方程3x2+2x-9=0的两根,
    ∴α+β=-,αβ=-3,
    ∴===.
    故选C.
    点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.
    2、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.
    3、B
    【解析】
    根据题意找到从左面看得到的平面图形即可.
    【详解】
    这个立体图形的左视图是,
    故选:B.
    【点睛】
    本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.
    4、A
    【解析】
    试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
    故选A.
    考点:轴对称图形的性质
    5、B
    【解析】
    分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.
    解析: ,故A选项错误; a3·a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6÷a3 = a3故D选项错误.
    故选B.
    6、D
    【解析】
    求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
    【详解】
    把,代入反比例函数 ,得:,,

    在中,由三角形的三边关系定理得:,
    延长交轴于,当在点时,,

    即此时线段与线段之差达到最大,
    设直线的解析式是,
    把,的坐标代入得:,
    解得:,
    直线的解析式是,
    当时,,即,
    故选D.
    【点睛】
    本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
    7、C
    【解析】
    根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.
    【详解】
    ∵AM⊥EF,∠EAM=10°
    ∴∠AEM=80°
    又∵AB∥CD
    ∴∠AEM+∠CFE=180°
    ∴∠CFE=100°.
    故选C.
    【点睛】
    本题考查三角形内角和与两条直线平行内错角相等.
    8、D
    【解析】
    分析:
    详解:如图,

    ∵AB⊥CD,CE⊥AD,
    ∴∠1=∠2,
    又∵∠3=∠4,
    ∴180°-∠1-∠4=180°-∠2-∠3,
    即∠A=∠C.
    ∵BF⊥AD,
    ∴∠CED=∠BFD=90°,
    ∵AB=CD,
    ∴△ABF≌△CDE,
    ∴AF=CE=a,ED=BF=b,
    又∵EF=c,
    ∴AD=a+b-c.
    故选:D.
    点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
    9、B
    【解析】
    求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
    【详解】
    3-(-4)=3+4=7℃.
    故选B.
    10、D
    【解析】
    分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
    详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
    故选D.

    点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
    11、D
    【解析】
    A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.
    【详解】
    A.-2x-2y3×2x3y=-4xy4,故本选项错误;
    B. (−2a2)3=−8a6,故本项错误;
    C. (2a+1)(2a−1)=4a2−1,故本项错误;
    D.35x3y2÷5x2y=7xy,故本选项正确.
    故答案选D.
    【点睛】
    本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.
    12、B
    【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.
    详解:A、a4与a5不是同类项,不能合并,故本选项错误;
    B、(2a2b3)2=4a4b6,故本选项正确;
    C、-2a(a+3)=-2a2-6a,故本选项错误;
    D、(2a-b)2=4a2-4ab+b2,故本选项错误;
    故选:B.
    点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、②③④⑤
    【解析】
    试题解析:∵二次函数与x轴有两个交点,
    ∴b2-4ac>1,故①错误,
    观察图象可知:当x>-1时,y随x增大而减小,故②正确,
    ∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,
    ∴x=1时,y=a+b+c<1,故③正确,
    ∵当m>2时,抛物线与直线y=m没有交点,
    ∴方程ax2+bx+c-m=1没有实数根,故④正确,
    ∵对称轴x=-1=-,
    ∴b=2a,
    ∵a+b+c<1,
    ∴3a+c<1,故⑤正确,
    故答案为②③④⑤.
    14、
    【解析】
    过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
    【详解】
    如图,过点B作BD⊥AC于D,设AH=BC=2x,

    ∵AB=AC,AH⊥BC,
    ∴BH=CH=BC=x,
    根据勾股定理得,AC==x,
    S△ABC=BC•AH=AC•BD,
    即•2x•2x=•x•BD,
    解得BC=x,
    所以,sin∠BAC=.
    故答案为.
    15、71
    【解析】
    分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
    详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
    x2=4y2+52,
    ∵△BCD的周长是30,
    ∴x+2y+5=30
    则x=13,y=1.
    ∴这个风车的外围周长是:4(x+y)=4×19=71.
    故答案是:71.
    点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
    16、108°
    【解析】
    先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.
    【详解】
    如图:

    ∵图中是两个全等的正五边形,
    ∴BC=BD,
    ∴∠BCD=∠BDC,
    ∵图中是两个全等的正五边形,
    ∴正五边形每个内角的度数是=108°,
    ∴∠BCD=∠BDC=180°-108°=72°,
    ∴∠CBD=180°-72°-72°=36°,
    ∴∠α=360°-36°-108°-108°=108°,
    故答案为108°.
    【点睛】
    本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.
    17、.
    【解析】
    连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
    【详解】
    连接OA、OB、OC、OD、OE、OF,

    ∵正六边形ABCDEF,
    ∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
    在△OAM中,由勾股定理得:OM=.
    18、①②③
    【解析】
    (1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
    【详解】
    (1)∵四边形ABCD是菱形,BD=AB,
    ∴AB=BD=BC=DC=DA,
    ∴△ABD和△CBD都是等边三角形,
    ∴∠A=∠BDF=60°,
    又∵AE=DF,
    ∴△AED≌△DFB,即结论①正确;
    (2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
    ∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
    ∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠CDN=∠CBM,
    如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
    ∴∠CDN=∠CBM=90°,
    又∵CB=CD,
    ∴△CBM≌△CDN,
    ∴S四边形BCDG=S四边形CMGN=2S△CGN,
    ∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
    ∴GN=CG,CN=CG,
    ∴S△CGN=CG2,
    ∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;

    (3)如下图,过点F作FK∥AB交DE于点K,
    ∴△DFK∽△DAE,△GFK∽△GBE,
    ∴,,
    ∵AF=2DF,
    ∴,
    ∵AB=AD,AE=DF,AF=2DF,
    ∴BE=2AE,
    ∴,
    ∴BG=6FG,即结论③成立.

    综上所述,本题中正确的结论是:
    故答案为①②③
    点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
    【解析】
    (1)用总人数50减去其它部门的人数;
    (2)根据中位数和众数的定义求解即可;
    (3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
    (4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
    【详解】
    (1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
    (2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
    在这些数中1600元出现的次数最多,因而众数是1600元;
    (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
    用1700元或1600元来介绍更合理些.
    (4)(元).
    能反映该公司员工的月工资实际水平.
    20、(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.
    【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
    ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
    (2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论.
    详解:(1)①如图1,

    ∵m=1,
    ∴反比例函数为y=,当x=1时,y=1,
    ∴B(1,1),
    当y=2时,
    ∴2=,
    ∴x=2,
    ∴A(2,2),
    设直线AB的解析式为y=kx+b,
    ∴,
    ∴,
    ∴直线AB的解析式为y=-x+3;
    ②四边形ABCD是菱形,
    理由如下:如图2,

    由①知,B(1,1),
    ∵BD∥y轴,
    ∴D(1,5),
    ∵点P是线段BD的中点,
    ∴P(1,3),
    当y=3时,由y=得,x=,
    由y=得,x=,
    ∴PA=1-=,PC=-1=,
    ∴PA=PC,
    ∵PB=PD,
    ∴四边形ABCD为平行四边形,
    ∵BD⊥AC,
    ∴四边形ABCD是菱形;
    (2)四边形ABCD能是正方形,
    理由:当四边形ABCD是正方形,
    ∴PA=PB=PC=PD,(设为t,t≠0),
    当x=1时,y==,
    ∴B(1,),
    ∴A(1-t,+t),
    ∴(1-t)(+t)=m,
    ∴t=1-,
    ∴点D的纵坐标为+2t=+2(1-)=8-,
    ∴D(1,8-),
    ∴1(8-)=n,
    ∴m+n=2.
    点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
    21、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.
    【解析】
    试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.
    试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,
    依题意得:解得:
    答:甲种材料每千克25元, 乙种材料每千克35元.
    (2)生产B产品a件,生产A产品(60-a)件. 依题意得:
    解得:
    ∵a的值为非负整数 ∴a=39、40、41、42
    ∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件
    (3)、答:生产A产品21件,B产品39件成本最低.
    设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500
    ∵k=55>0 ∴W随a增大而增大∴当a=39时,总成本最低.
    考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.
    22、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【解析】
    (1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
    (2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
    (3)分两种情形列出方程即可解决问题.
    【详解】
    解:(1)根据图象信息:货车的速度V货=,
    ∵轿车到达乙地的时间为货车出发后4.5小时,
    ∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
    此时,货车距乙地的路程为:300﹣270=30(千米).
    所以轿车到达乙地后,货车距乙地30千米.
    故答案为30;
    (2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
    ∵C(2.5,80),D(4.5,300)在其图象上,
    ,解得,
    ∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
    易得OA:y=60x,
    ,解得,
    ∴当x=3.9时,轿车与货车相遇;
    (3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
    由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
    解得x=3.5或4.3小时.
    答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
    【点睛】
    本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
    23、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
    【解析】
    (1)利用对称轴公式求出m的值,即可确定出解析式;
    (1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
    (3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
    【详解】
    (1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
    (1)当x=﹣时,y=;当x=1时,y=.
    ∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
    (3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
    ∵点A在点B的左侧,∴点A坐标为(﹣6,0).
    设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
    设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
    【点睛】
    本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
    24、见解析.
    【解析】
    由“SAS”可证△ABC≌△DEC,可得BC=CE,即可得结论.
    【详解】
    证明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°
    ∴△ABC≌△DEC(SAS)
    ∴BC=CE,
    ∵AC=AE+CE
    ∴AC=AE+BC
    【点睛】
    本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.
    25、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    【解析】
    试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
    (1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
    (2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
    (4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
    试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
    ∴,解得 ,
    ∴抛物线解析式为y=﹣ x1+x+4;
    (1)由(1)可求得抛物线顶点为N(1, ),
    如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,

    设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
    ∴直线C′N的解析式为y=x-4 ,
    令y=0,解得x= ,
    ∴点K的坐标为(,0);
    (2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,

    由﹣ x1+x+4=0,得x1=﹣1,x1=4,
    ∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
    又∵QE∥AC,∴△BQE≌△BAC,
    ∴ ,即 ,解得EG= ;
    ∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
    = =-(m-1)1+2 .
    又∵﹣1≤m≤4,
    ∴当m=1时,S△CQE有最大值2,此时Q(1,0);
    (4)存在.在△ODF中,
    (ⅰ)若DO=DF,∵A(4,0),D(1,0),
    ∴AD=OD=DF=1.
    又在Rt△AOC中,OA=OC=4,
    ∴∠OAC=45°.
    ∴∠DFA=∠OAC=45°.
    ∴∠ADF=90°.
    此时,点F的坐标为(1,1).
    由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
    此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
    (ⅱ)若FO=FD,过点F作FM⊥x轴于点M.

    由等腰三角形的性质得:OM=OD=1,
    ∴AM=2.
    ∴在等腰直角△AMF中,MF=AM=2.
    ∴F(1,2).
    由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
    此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
    (ⅲ)若OD=OF,
    ∵OA=OC=4,且∠AOC=90°.
    ∴AC=4.
    ∴点O到AC的距离为1.
    而OF=OD=1<1,与OF≥1矛盾.
    ∴在AC上不存在点使得OF=OD=1.
    此时,不存在这样的直线l,使得△ODF是等腰三角形.
    综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
    26、1
    【解析】解:


    取时,原式.
    27、(1)(,2);(2)①y=(x-)2+2;②
    【解析】
    (1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;
    (2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;
    ②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.
    【详解】
    (1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,
    ∴抛物线G2:y=m(x-)2+2,
    ∵点A是抛物线G2的顶点.
    ∴点A的坐标为(,2).
    (2)①设抛物线对称轴与直线l交于点D,如图1所示.
    ∵点A是抛物线顶点,
    ∴AB=AC.
    ∵∠BAC=90°,
    ∴△ABC为等腰直角三角形,
    ∴CD=AD=,
    ∴点C的坐标为(2,).
    ∵点C在抛物线G2上,
    ∴=m(2-)2+2,
    解得:.
    ②依照题意画出图形,如图2所示.
    同理:当∠BAC=60°时,点C的坐标为(+1,);
    当∠BAC=120°时,点C的坐标为(+3,).
    ∵60°<∠BAC<120°,
    ∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,
    ∴,
    解得:.


    【点睛】
    此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.

    相关试卷

    2022年江苏省苏州市工业园区金鸡湖中学中考数学一模试卷(含解析):

    这是一份2022年江苏省苏州市工业园区金鸡湖中学中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2021-2022学年江苏省苏州市振华中学中考联考数学试题含解析:

    这是一份2021-2022学年江苏省苏州市振华中学中考联考数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,点A,下列判断正确的是,如图所示等内容,欢迎下载使用。

    2021-2022学年江苏省苏州市景范中学中考四模数学试题含解析:

    这是一份2021-2022学年江苏省苏州市景范中学中考四模数学试题含解析,共17页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map