![2021-2022学年湖南省张家界市慈利县重点中学中考数学五模试卷含解析第1页](http://www.enxinlong.com/img-preview/2/3/13286363/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年湖南省张家界市慈利县重点中学中考数学五模试卷含解析第2页](http://www.enxinlong.com/img-preview/2/3/13286363/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年湖南省张家界市慈利县重点中学中考数学五模试卷含解析第3页](http://www.enxinlong.com/img-preview/2/3/13286363/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年湖南省张家界市慈利县重点中学中考数学五模试卷含解析
展开
这是一份2021-2022学年湖南省张家界市慈利县重点中学中考数学五模试卷含解析,共18页。试卷主要包含了的倒数是,已知一组数据等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.化简的结果是( )
A.1 B. C. D.
2.-4的相反数是( )
A. B. C.4 D.-4
3.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有( )
A. B. C. D.
4.的倒数是( )
A. B. C. D.
5.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
6.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为( )
A.﹣2 B.4 C.﹣4 D.2
7.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )
A.20 B.25 C.30 D.35
8.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
A. B. C. D.
9.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )
A.3,-1 B.1,-3 C.-3,1 D.-1,3
10.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.
12.计算的结果等于______________________.
13.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.
14.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.
15.分解因式:=____
16.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.
三、解答题(共8题,共72分)
17.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:
(1)调查了________名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;
(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
18.(8分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)
设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
19.(8分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
20.(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
21.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
22.(10分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?
译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?
23.(12分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是_____度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
24.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
(1)求证:;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
原式=•(x–1)2+=+==1,故选A.
2、C
【解析】
根据相反数的定义即可求解.
【详解】
-4的相反数是4,故选C.
【点晴】
此题主要考查相反数,解题的关键是熟知相反数的定义.
3、D
【解析】
根据轴对称图形的概念求解.
【详解】
A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
4、C
【解析】
由互为倒数的两数之积为1,即可求解.
【详解】
∵,∴的倒数是.
故选C
5、D
【解析】
分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
平均数为(12+5+9+5+14)÷5=9,故选项A正确;
重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
5出现了2次,最多,∴众数是5,故选项C正确;
极差为:14﹣5=9,故选项D错误.
故选D
6、C
【解析】
试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
故选C.
考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
7、B
【解析】
设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
,,
∴,
∴当时,(亿),
∵400-375=25,
∴该行可贷款总量减少了25亿.
故选B.
8、D
【解析】
根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
则抽到的书签正好是相对应的书名和作者姓名的概率是=;
故选D.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
9、A
【解析】
根据题意可得方程组,再解方程组即可.
【详解】
由题意得:,
解得:,
故选A.
10、C
【解析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:.
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
过点作于,根据三角形的性质及三角形内角和定理可计算
再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
【详解】
如图,过点作于,
∵,
∴.
∵将绕点逆时针旋转,使点落在点处,此时点落在点处,
∴
∵
∴
在中,∵
∴
∴,
在中,∵,
∴,
∴.
故答案为.
【点睛】
本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
12、
【解析】
根据完全平方式可求解,完全平方式为
【详解】
【点睛】
此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
13、(-,1)
【解析】
根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.
【详解】
解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)
则点B(3,−2)的对应点B′的坐标为:(-,1),
故答案为(-,1).
【点睛】
本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.
14、m<﹣1.
【解析】
根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
【详解】
∵关于x的方程x2﹣2x﹣m=0没有实数根,
∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,
解得:m<﹣1,
故答案为:m<﹣1.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份湖南省张家界市慈利县重点中学2022年中考冲刺卷数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,下列计算中,正确的是等内容,欢迎下载使用。
这是一份2022届湖南省张家界市五道水镇中学中考数学模试卷含解析,共23页。试卷主要包含了下列计算正确的是,方程的解是等内容,欢迎下载使用。
这是一份2022届湖南省张家界市慈利县中考数学适应性模拟试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是,﹣18的倒数是等内容,欢迎下载使用。