终身会员
搜索
    上传资料 赚现金

    2021-2022学年湖南省衡阳市蒸湘区重点名校中考冲刺卷数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年湖南省衡阳市蒸湘区重点名校中考冲刺卷数学试题含解析第1页
    2021-2022学年湖南省衡阳市蒸湘区重点名校中考冲刺卷数学试题含解析第2页
    2021-2022学年湖南省衡阳市蒸湘区重点名校中考冲刺卷数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省衡阳市蒸湘区重点名校中考冲刺卷数学试题含解析

    展开

    这是一份2021-2022学年湖南省衡阳市蒸湘区重点名校中考冲刺卷数学试题含解析,共23页。试卷主要包含了已知点P,下列计算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是

    A. B. C. D.
    2.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )

    A. B.
    C. D.
    3.已知圆内接正三角形的面积为3,则边心距是(  )
    A.2 B.1 C. D.
    4.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则
    y1>y1.其中说法正确的是( )

    A.①② B.②③ C.①②④ D.②③④
    5.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    6.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是(  )
    A.m+n<0 B.m+n>0 C.m<n D.m>n
    7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(  )
    A. B. C. D.
    8.在平面直角坐标系中,点(2,3)所在的象限是(   )
    A.第一象限                            B.第二象限                            C.第三象限                            D.第四象限
    9.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    10.下列计算正确的是(  )
    A.﹣= B. =±2
    C.a6÷a2=a3 D.(﹣a2)3=﹣a6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.

    12.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.
    13.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.

    14.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.

    15.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DE⊥EA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_____m.

    16.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_____.
    三、解答题(共8题,共72分)
    17.(8分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是   .列表:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6

    y


    m
    ﹣1

    ﹣5
    n
    ﹣1



    表中m=   ,n=   .描点、连线
    在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
    观察所画出的函数图象,写出该函数的两条性质:
    ①   ;
    ②   .
    18.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:

    (1)本次抽查测试的学生人数为   ,图①中的a的值为   ;
    (2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.
    19.(8分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

    (1)在这次评价中,一共抽查了   名学生;
    (2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为   度;
    (3)请将频数分布直方图补充完整;
    (4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?
    20.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
    (1)求反比例函数和一次函数的解析式;
    (2)求直线AB与x轴的交点C的坐标及△AOB的面积;
    (3)求方程的解集(请直接写出答案).

    21.(8分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
    求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
    22.(10分)如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

    (1)求证:PA是⊙O的切线;
    (2)若PD=,求⊙O的直径.
    23.(12分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.
    (1)求证:四边形CDBF是平行四边形;
    (2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的长.

    24.某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
    月份(月)

    1

    2

    成本(万元/件)

    11

    12

    需求量(件/月)

    120

    100

    (1)求与满足的关系式,请说明一件产品的利润能否是12万元;
    (2)求,并推断是否存在某个月既无盈利也不亏损;
    (3)在这一年12个月中,若第个月和第个月的利润相差最大,求.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
    【详解】
    解:由题意得,,,

    由勾股定理得,,

    故选:A.
    【点睛】
    本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
    2、B
    【解析】
    根据图示,可得:b<0<a,|b|>|a|,据此判断即可.
    【详解】
    ∵b<0<a,|b|>|a|,
    ∴a+b<0,
    ∴|a+b|= -a-b.
    故选B.
    【点睛】
    此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.
    3、B
    【解析】
    根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.
    【详解】
    如图,

    连接AO并延长交BC于点D,则AD⊥BC,
    设OD=x,则AD=3x,
    ∵tan∠BAD=,
    ∴BD= tan30°·AD=x,
    ∴BC=2BD=2x,
    ∵ ,
    ∴×2x×3x=3,
    ∴x=1
    所以该圆的内接正三边形的边心距为1,
    故选B.
    【点睛】
    本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.
    4、C
    【解析】
    ∵二次函数的图象的开口向上,∴a>0。
    ∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。
    ∵二次函数图象的对称轴是直线x=﹣1,∴。∴b=1a>0。
    ∴abc<0,因此说法①正确。
    ∵1a﹣b=1a﹣1a=0,因此说法②正确。
    ∵二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),
    ∴图象与x轴的另一个交点的坐标是(1,0)。
    ∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。
    ∵二次函数图象的对称轴为x=﹣1,
    ∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
    ∵当x>﹣1时,y随x的增大而增大,而<3
    ∴y1<y1,因此说法④正确。
    综上所述,说法正确的是①②④。故选C。
    5、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    6、D
    【解析】
    根据反比例函数的性质,可得答案.
    【详解】
    ∵y=−的k=-2<1,图象位于二四象限,a<1,
    ∴P(a,m)在第二象限,
    ∴m>1;
    ∵b>1,
    ∴Q(b,n)在第四象限,
    ∴n<1.
    ∴n<1<m,
    即m>n,
    故D正确;
    故选D.
    【点睛】
    本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
    7、B
    【解析】
    直接得出两位数是3的倍数的个数,再利用概率公式求出答案.
    【详解】
    ∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
    十位数为3,则两位数是3的倍数的个数为2.
    ∴得到的两位数是3的倍数的概率为: =.
    故答案选:B.
    【点睛】
    本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.
    8、A
    【解析】
    根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
    【详解】
    解:点(2,3)所在的象限是第一象限.
    故答案为:A
    【点睛】
    考核知识点:点的坐标与象限的关系.
    9、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    10、D
    【解析】
    根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.
    【详解】
    A. 不是同类二次根式,不能合并,故A选项错误;
    B.=2≠±2,故B选项错误;
    C. a6÷a2=a4≠a3,故C选项错误;
    D. (−a2)3=−a6,故D选项正确.
    故选D.
    【点睛】
    本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.
    12、m<﹣1.
    【解析】
    根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
    【详解】
    ∵关于x的方程x2﹣2x﹣m=0没有实数根,
    ∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,
    解得:m<﹣1,
    故答案为:m<﹣1.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    13、120
    【解析】
    首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
    【详解】
    由题意得:∠GBA=∠GBE,
    ∵AD∥BC,
    ∴∠AGB=∠GBE=30°,
    ∴∠ABC=60°,
    ∵AB∥CD,
    ∴∠C=180°-∠ABC=120°,
    故答案为:120.
    【点睛】
    本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
    14、
    【解析】
    连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
    【详解】
    连接AG,延长AG交BC于F.

    ∵G是△ABC的重心,DE∥BC,
    ∴BF=CF,

    ∵,,
    ∴,
    ∵BF=CF,
    ∴DG=GE,
    ∵,,
    ∴,
    ∴,
    故答案为.
    【点睛】
    本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    15、1
    【解析】
    先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.
    【详解】
    解:作DF⊥AB于F,交BC于G.则四边形DEAF是矩形,

    ∴DE=AF=15m,
    ∵DF∥AE,
    ∴∠BGF=∠BCA=60°,
    ∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,
    ∴∠GDB=∠GBD=30°,
    ∴GD=GB,
    在Rt△DCE中,∵CD=2DE,
    ∴∠DCE=30°,
    ∴∠DCB=90°,
    ∵∠DGC=∠BGF,∠DCG=∠BFG=90°
    ∴△DGC≌△BGF,
    ∴BF=DC=30m,
    ∴AB=30+15=1(m),
    故答案为1.
    【点睛】
    本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
    16、1
    【解析】
    根据白球的概率公式=列出方程求解即可.
    【详解】
    不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,
    根据古典型概率公式知:P(白球)==.
    解得:n=1,
    故答案为1.
    【点睛】
    此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

    三、解答题(共8题,共72分)
    17、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【解析】
    (1)分式的分母不等于零;
    (2)把自变量的值代入即可求解;
    (3)根据题意描点、连线即可;
    (4)观察图象即可得出该函数的其他性质.
    【详解】
    (1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
    故答案为:一切实数;
    (2)m=,n=,
    故答案为:-,-;
    (3)建立适当的直角坐标系,描点画出图形,如下图所示:

    (4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
    故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【点睛】
    本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
    18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.
    【解析】
    (1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;
    (2)根据平均数、众数、中位数的定义计算可得.
    【详解】
    (1)本次抽查测试的学生人数为14÷21%=50人,a%=×100%=2%,即a=2.
    故答案为50、2;
    (2)观察条形统计图,平均数为=7.11.
    ∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.
    ∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴=1,∴这组数据的中位数是1.
    【点睛】
    本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.
    19、(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.
    【解析】
    (1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
    (2)由“主动质疑”占的百分比乘以360°即可得到结果;
    (3)求出“讲解题目”的学生数,补全统计图即可;
    (4)求出“独立思考”学生占的百分比,乘以2800即可得到结果.
    【详解】
    (1)根据题意得:224÷40%=560(名),
    则在这次评价中,一个调查了560名学生;
    故答案为:560;
    (2)根据题意得:×360°=54°,
    则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
    故答案为:54;
    (3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:

    (4)根据题意得:2800×(人),
    则“独立思考”的学生约有840人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    20、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
    【解析】
    试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
    (2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
    (3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
    试题解析:(1)∵B(2,﹣4)在y=上,
    ∴m=﹣1.
    ∴反比例函数的解析式为y=﹣.
    ∵点A(﹣4,n)在y=﹣上,
    ∴n=2.
    ∴A(﹣4,2).
    ∵y=kx+b经过A(﹣4,2),B(2,﹣4),
    ∴,
    解之得.
    ∴一次函数的解析式为y=﹣x﹣2.
    (2)∵C是直线AB与x轴的交点,
    ∴当y=0时,x=﹣2.
    ∴点C(﹣2,0).
    ∴OC=2.
    ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
    (3)不等式的解集为:﹣4<x<0或x>2.
    21、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
    【解析】
    (1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
    (2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
    (3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
    【详解】
    (1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
    ∴a=-1,b=-1,
    ∴A(-1,3),B(3,-1),
    ∵点A(-1,3)在反比例函数y=上,
    ∴k=-1×3=-3,
    ∴反比例函数解析式为y=;
    (2)设点P(n,-n+2),
    ∵A(-1,3),
    ∴C(-1,0),
    ∵B(3,-1),
    ∴D(3,0),
    ∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
    ∵S△ACP=S△BDP,
    ∴×3×|n+1|=×1×|3−n|,
    ∴n=0或n=−3,
    ∴P(0,2)或(−3,5);
    (3)设M(m,0)(m>0),
    ∵A(−1,3),B(3,−1),
    ∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
    ∵△MAB是等腰三角形,
    ∴①当MA=MB时,
    ∴(m+1)2+9=(m−3)2+1,
    ∴m=0,(舍)
    ②当MA=AB时,
    ∴(m+1)2+9=32,
    ∴m=−1+或m=−1−(舍),
    ∴M(−1+,0)
    ③当MB=AB时,(m−3)2+1=32,
    ∴m=3+或m=3−(舍),
    ∴M(3+,0)
    即:满足条件的M(−1+,0)或(3+,0).
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
    22、(1)见解析(2)2
    【解析】
    解:(1)证明:连接OA,
    ∵∠B=600,∴∠AOC=2∠B=1.
    ∵OA=OC,∴∠OAC=∠OCA=2.
    又∵AP=AC,∴∠P=∠ACP=2.
    ∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.
    ∵OA是⊙O的半径,∴PA是⊙O的切线.

    (2)在Rt△OAP中,∵∠P=2,
    ∴PO=2OA=OD+PD.
    又∵OA=OD,∴PD=OA.
    ∵PD=,∴2OA=2PD=2.
    ∴⊙O的直径为2..
    (1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出
    ∠P=2,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论.
    (2)利用含2的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.
    23、(1)证明见解析;(2)1.
    【解析】
    (1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;
    (2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.
    【详解】
    解:(1)证明:∵CF∥AB,
    ∴∠ECF=∠EBD.
    ∵E是BC中点,
    ∴CE=BE.
    ∵∠CEF=∠BED,
    ∴△CEF≌△BED.
    ∴CF=BD.
    ∴四边形CDBF是平行四边形.
    (2)解:如图,作EM⊥DB于点M,

    ∵四边形CDBF是平行四边形,BC=,
    ∴,DF=2DE.
    在Rt△EMB中,EM=BE•sin∠ABC=2,
    在Rt△EMD中,∵∠EDM=30°,
    ∴DE=2EM=4,
    ∴DF=2DE=1.
    【点睛】
    本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.
    24、 (1),不可能;(2)不存在;(3)1或11.
    【解析】
    试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
    试题解析:(1)由题意设,由表中数据,得
    解得∴.
    由题意,若,则.
    ∵x>0,∴.
    ∴不可能.
    (2)将n=1,x=120代入,得
    120=2-2k+9k+27.解得k=13.
    将n=2,x=100代入也符合.
    ∴k=13.
    由题意,得18=6+,求得x=50.
    ∴50=,即.
    ∵,∴方程无实数根.
    ∴不存在.
    (3)第m个月的利润为w==;
    ∴第(m+1)个月的利润为
    W′=.
    若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
    若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
    ∴m=1或11.
    考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.

    相关试卷

    2024年湖南省衡阳市蒸湘区中考一模数学试题(原卷版+解析版):

    这是一份2024年湖南省衡阳市蒸湘区中考一模数学试题(原卷版+解析版),文件包含2024年湖南省衡阳市蒸湘区中考一模数学试题原卷版docx、2024年湖南省衡阳市蒸湘区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    湖南省衡阳市蒸湘区2021-2022学年中考猜题数学试卷含解析:

    这是一份湖南省衡阳市蒸湘区2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了下列计算,结果等于a4的是,某种圆形合金板材的成本y,比较4,,的大小,正确的是,|﹣3|的值是等内容,欢迎下载使用。

    湖南省衡阳市耒阳市重点中学2021-2022学年中考冲刺卷数学试题含解析:

    这是一份湖南省衡阳市耒阳市重点中学2021-2022学年中考冲刺卷数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,比1小2的数是,下列运算中,正确的是,关于x的不等式组的所有整数解是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map