![2021-2022学年湖南省湘潭市重点达标名校中考数学考前最后一卷含解析01](http://www.enxinlong.com/img-preview/2/3/13286404/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年湖南省湘潭市重点达标名校中考数学考前最后一卷含解析02](http://www.enxinlong.com/img-preview/2/3/13286404/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年湖南省湘潭市重点达标名校中考数学考前最后一卷含解析03](http://www.enxinlong.com/img-preview/2/3/13286404/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年湖南省湘潭市重点达标名校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列运算正确的是( )
A. B.
C. D.
2.tan30°的值为( )
A. B. C. D.
3.一、单选题
如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的( )
A.点A B.点B C.点C D.点D
4.如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
5.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12 B.9 C.6 D.4
6.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )
A.2 B.3 C.4 D.5
7.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )
A.60° B.50° C.40° D.30°
8.把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x) B.ax2(x﹣2)
C.ax(x+1)(x﹣1) D.ax(x﹣1)2
9.下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,,则甲的射击成绩较稳定
C.“明天降雨的概率为”,表示明天有半天都在降雨
D.了解一批电视机的使用寿命,适合用普查的方式
10.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
二、填空题(本大题共6个小题,每小题3分,共18分)
11.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .
12.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
①两人相遇前,甲的速度小于乙的速度;
②出发后1小时,两人行程均为10km;
③出发后1.5小时,甲的行程比乙多3km;
④甲比乙先到达终点.
其中正确的有_____个.
13.分解因式x2﹣x=_______________________
14.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.
15.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于______.
16.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.
三、解答题(共8题,共72分)
17.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
X(千米) | 8 | 9 | 10 | 11.5 | 13 |
(分钟) | 18 | 20 | 22 | 25 | 28 |
(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
18.(8分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M,N各位于哪个象限,并简要说明理由.
19.(8分)先化简,再求值:,其中x=-1.
20.(8分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.
21.(8分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
求证:(1)△PAC∽△BPD;
(2)若AC=3,BD=1,求CD的长.
22.(10分)如图,在直角坐标系中△ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';
(2)写出点A'的坐标.
23.(12分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.
24.解方程组: .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A. ,故A选项错误,不符合题意;
B. ,故B选项错误,不符合题意;
C. ,故C选项错误,不符合题意;
D. ,正确,符合题意,
故选D.
【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
2、D
【解析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
3、D
【解析】
根据全等三角形的性质和已知图形得出即可.
【详解】
解:∵△MNP≌△MEQ,
∴点Q应是图中的D点,如图,
故选:D.
【点睛】
本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
4、C
【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选:C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
5、B
【解析】
∵点,是中点
∴点坐标
∵在双曲线上,代入可得
∴
∵点在直角边上,而直线边与轴垂直
∴点的横坐标为-6
又∵点在双曲线
∴点坐标为
∴
从而,故选B
6、B
【解析】
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,
∵∠GEF=90°,
∴∠GEA+∠FEB=90°,
∴∠AGE=∠FEB,∠AEG=∠EFB,
∴△AEG∽△BFE,
∴,
又∵AE=BE,
∴AE2=AG•BF=2,
∴AE=(舍负),
∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,
∴GF的长为3,
故选B.
【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.
7、C
【解析】
先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=180°﹣100°=80°,a∥c,
∴∠α=180°﹣80°﹣60°=40°.
故选:C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
8、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
9、B
【解析】
利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.
【详解】
解: A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;
B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;
C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;
D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;
故选B.
【点睛】
本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.
10、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.
试题解析:∵圆锥的底面周长为6π,
∴圆锥的底面半径为 6π÷2π="3,"
∵圆锥的侧面积=×侧面展开图的弧长×母线长,
∴母线长=2×12π÷6π="4,"
∴这个圆锥的高是
考点:圆锥的计算.
12、1
【解析】
试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
由图可得,两人在1小时时相遇,行程均为10km,故②正确;
甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.
13、x(x-1)
【解析】
x2﹣x
= x(x-1).
故答案是:x(x-1).
14、
【解析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P作PM⊥AB,则:∠PMB=90°,
当PM⊥AB时,PM最短,
因为直线y=x﹣3与x轴、y轴分别交于点A,B,
可得点A的坐标为(4,0),点B的坐标为(0,﹣3),
在Rt△AOB中,AO=4,BO=3,AB=,
∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,
∴△PBM∽△ABO,
∴,
即:,
所以可得:PM=.
15、
【解析】
试题分析:如图,过点C作CF⊥AD交AD的延长线于点F,可得BE∥CF,易证△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分线且AD⊥BE,BG是公共边,可证得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.
考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.
16、 cm
【解析】
利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.
【详解】
∵半径为1cm的圆形,
∴底面圆的半径为:1cm,周长为2πcm,
扇形弧长为:2π=,
∴R=4,即母线为4cm,
∴圆锥的高为:(cm).
故答案为cm.
【点睛】
此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.
三、解答题(共8题,共72分)
17、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
【详解】
(1)设y1=kx+b,将(8,18),(9,20),代入
y1=kx+b,得:
解得
所以y1关于x的函数解析式为y1=2x+2.
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
所以当x=9时,y取得最小值,最小值为39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点睛】
本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
18、 (1) k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限
【解析】
试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据S△ABC=S△AOC+S△BOC即可求得△AOB的面积;(3)由<可知有三种情况,①点M、N在第三象限的分支上,②点M、N在第一象限的分支上,③ M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可.
试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1.
∵A(1,8)、B(-4,-1)在图象上,
∴,
解得,.
(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,
∴OC=3
∴S△ABC=S△AOC+S△BOC=
(3)点M在第三象限,点N在第一象限.
①若<<0,点M、N在第三象限的分支上,则>,不合题意;
②若0<<,点M、N在第一象限的分支上,则>,不合题意;
③若<0<,M在第三象限,点N在第一象限,则<0<,符合题意.
考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.
19、解:原式=,.
【解析】
试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.
解:原式=.
当x=-1时,原式.
20、1.
【解析】
试题分析:根据相似三角形的判定与性质,可得答案.
试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.
考点:相似三角形的判定与性质.
21、(1)见解析;(2).
【解析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
【详解】
证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,
∴△PAC∽△BPD;
(2)∵,PC=PD,AC=3,BD=1
∴PC=PD=,
∴CD=.
【点睛】
本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.
22、(1)见解析;(2)点A'的坐标为(-3,3)
【解析】
解:(1),△A′'B′'C′'如图所示.
(2)点A'的坐标为(-3,3).
23、(1)(2)见解析;(3)P(0,2).
【解析】
分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.
(2)分别作各点关于x轴的对称点,依次连接即可.
(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.
详解:(1)(2)如图所示:
(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.
设直线B1C′的解析式为y=kx+b(k≠0),
∵B1(﹣2,-2),C′(1,4),
∴,解得:,
∴直线AB2的解析式为:y=2x+2,
∴当x=0时,y=2,∴P(0,2).
点睛:本题主要考查轴对称图形的绘制和轴对称的应用.
24、
【解析】
方程组整理后,利用加减消元法求出解即可.
【详解】
解:方程组整理得:
①+②得:9x=-45,即x=-5,
把x=-代入①得:
解得:
则原方程组的解为
【点睛】
本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.
浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。
湖南省双峰县达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份湖南省双峰县达标名校2021-2022学年中考数学考前最后一卷含解析,共22页。试卷主要包含了下列命题中,错误的是,下列各式中,计算正确的是等内容,欢迎下载使用。
广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了下列事件中,必然事件是,初三,下列运算正确的是等内容,欢迎下载使用。