终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021仁寿县高二下学期期末模拟考试数学(文)试题含答案

    立即下载
    加入资料篮
    2021仁寿县高二下学期期末模拟考试数学(文)试题含答案第1页
    2021仁寿县高二下学期期末模拟考试数学(文)试题含答案第2页
    2021仁寿县高二下学期期末模拟考试数学(文)试题含答案第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021仁寿县高二下学期期末模拟考试数学(文)试题含答案

    展开

    这是一份2021仁寿县高二下学期期末模拟考试数学(文)试题含答案,共10页。试卷主要包含了06,5亿元等内容,欢迎下载使用。
    高2019级仁寿县第四学期期末模拟试卷 文科数学 2021.06数学试题卷(文科)共4页.满分150分.考试时间120分钟.注意事项:1.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.2答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试题卷上答题无效.4.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知i为虚数单位,复数,若z为纯虚数,则    A                 B                  C2                  D2.某学校决定从该校的2000名高一学生中采用系统抽样(等距)的方法抽取50名学生进行体质分析,现将2000名学生从12000编号,已知样本中第一个编号为7,则抽取的第26个学生的编号为(    A997                 B1007                  C1047                D108732020年初,从非洲蔓延到东南亚的蝗虫灾害严重威胁了国际农业生产,影响了人民生活.世界性与区域性温度的异常、早涝频繁发生给蝗灾发生创造了机会.已知蝗虫的产卵量与温度的关系可以用模型拟合,设,其变换后得到一组数据:由上表可得线性回归方程,则    A         B        C         D4.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、 乙两人的平均成绩分别为,下列说法正确的是(    A,且乙比甲的成绩稳定         B,且乙比甲的成绩稳定C,且甲比乙的成绩稳定         D,且甲比乙的成绩稳定52021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是212日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从212日到218日共计7天的累计票房(单位:亿元),则下列说法中错误的是(    A.这7天电影《你好,李焕英》每天的票房都超过2.5亿元B.这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小C.这7天电影《你好,李焕英》的当日票房占比逐渐增大D.这7天中有4天电影《唐人街探案3》的当日票房占比超过50%6.如图所示的程序框图,若输入x的值为2,输出v的值为16,则判断框内可以填入(    Ak≤3             Bk≤4            Ck≥3             Dk≥47.函数的零点个数为(    A                 B            C             D8.苏格兰数学家科林麦克劳林(ColinMaclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:,试根据此公式估计下面代数式的近似值为(    )(可能用到数值ln2.4140.881ln3.4141.23A3.23              B2.881             C1.881               D1.239.函数(其中为自然对数的底数)的图象大致是(    A   B   C   D10.甲乙两人相约10天内在某地会面,约定先到的人等候另一个人,经过三天后方可离开.若他们在期限内到达目的地是等可能的,则此二人会晤的概率是(    A0.5        B0.51              C0.75                   D0.411.设函数是奇函数的导函数,.时,,则使得成立的的取值范围是(    A     B     C      D12.已知函数,设为实数,若存在实数,使,则实数的取值范围为(    A            B          C      D填空题:本大题共4小题,每小题5分,共20. 请将答案填在答题卷中的相应位置.13的边为边上一动点,则的概率为_____14.复数是虚数单位)是方程的一个根,则实数______15.已知函数的定义域为,且的图像如右图所示,记的导函数为,则不等式的解集是_______16.若函数图象在点处的切线方程为,则的最小值为______三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤.17.(本小题101用反证法证明:在一个三角形中,至少有一个内角大于或等于2用分析法证明:当时,18.(本小题12某企业有AB两个分厂生产某种产品,规定该产品的某项质量指标值不低于120的为优质品.分别从AB两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:1根据频率分布直方图,分别求出B分厂的质量指标值的中位数和平均数的估计值;2)填写下面列联表,并根据列联表判断是否有99%的把握认为这两个分厂的产品质量有差异? 19.(本小题12已知函数1)求曲线处的切线方程;2)求曲线过点的切线方程. 20.(本小题12某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据如表所示:已知变量具有线性负相关关系,且,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.1)试判断谁的计算结果正确?并求出的值;2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是理想数据.现从检测数据中随机抽取2个,求理想数据至少有一个的概率 21本小题12)已知函数1)求函数的最值2)求证 22.(本小题12已知函数为自然对数的底数).1)若的极值点,求值;2)若只有一个零点,求的取值范围.  高2019级仁寿县第四学期期末模拟试卷 文科数学参考答案一、选择题1.C   2.B   3.B   4.A   5.D   6.A   7.A   8.B   9.C   10.B   11.C   12.B二、填空题   13    14    15    16 三、解答题17.解:(1)证明:假设三角形三个角都小于·············································1那么····························································································2而三角形内角和与假设矛盾·····························································3所以三角形至少有一个内角大于或等于·····························································42)证明:要证),只需证·····················································5则需证,即··········································································7,则,当时,;当时,,所以,即,则原不等式得证··················································10 18.解:(1B分厂的质量指标值;,则的中位数为······································2的平均数为·········6 2列联表:···············································································7由列联表可知的观测值为:··································11所以有99%的把握认为两个分厂的产品质量有差异.················································12 19.解:(1)由已知得,,所以切线斜率···························2因为,所以切点坐标为·····················································4所以所求直线方程为故曲线处的切线方程为.·······················································5(2)由已知得,设切点为,···················································6,即,得所以切点为,切线的斜率为·················································10所以切线方程为即切线方程为·······························································12 20.解:(1变量具有线性负相关关系,甲是错误的.······································1,满足方程,故乙是正确的.··········3··································································52)由计算可得理想数据个,即,则用字母代表理想数据,其余检测数据用代表,·················································································7所以从检测数中随机抽取个有种,······························································································10满足题意的有种,·········11所以理想数据至少有一个的概率为····························································12 21.解:(1)由题可知··································································1          所以,当时,单调递减;当时,单调递增,所以··································································42)方法一:,令,故上单调递增.············································5,又上连续,使得,即.*·····························7的变化情况如下:极小值. 由(*)式得,代入上式得. ,故上单调递减.,又..·················································································12 方法二:································································8易得                                                                                                                                                         所以,得证······················································12    22.解:(1······································································1时,,此时恒成立,则不是函数的极值点·······················································································3所以···············································································42只有一个零点,显然是,所以分为两种情况1种情况:满足,此时·····················································62种情况:无解,时,单调递增,故在上存在使得·························································································8时,方程显然无解;·······························································9时,解得,当时,单调递减;当时,单调递增,则,即,所以·································································································11综上所述:················································································12  

    相关试卷

    四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题:

    这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题,共10页。试卷主要包含了06,5亿元等内容,欢迎下载使用。

    四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题:

    这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题,共9页。试卷主要包含了06,5亿元等内容,欢迎下载使用。

    四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题:

    这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题,共9页。试卷主要包含了06,5亿元等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map