2021仁寿县高二下学期期末模拟考试数学(文)试题含答案
展开
这是一份2021仁寿县高二下学期期末模拟考试数学(文)试题含答案,共10页。试卷主要包含了06,5亿元等内容,欢迎下载使用。
高2019级仁寿县第四学期期末模拟试卷 文科数学 2021.06数学试题卷(文科)共4页.满分150分.考试时间120分钟.注意事项:1.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.2.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试题卷上答题无效.4.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知i为虚数单位,复数,,若z为纯虚数,则( )A. B. C.2 D.2.某学校决定从该校的2000名高一学生中采用系统抽样(等距)的方法抽取50名学生进行体质分析,现将2000名学生从1至2000编号,已知样本中第一个编号为7,则抽取的第26个学生的编号为( )A.997 B.1007 C.1047 D.10873.2020年初,从非洲蔓延到东南亚的蝗虫灾害严重威胁了国际农业生产,影响了人民生活.世界性与区域性温度的异常、早涝频繁发生给蝗灾发生创造了机会.已知蝗虫的产卵量与温度的关系可以用模型拟合,设,其变换后得到一组数据:由上表可得线性回归方程,则( )A. B. C. D.4.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、 乙两人的平均成绩分别为,下列说法正确的是( )A.,且乙比甲的成绩稳定 B.,且乙比甲的成绩稳定C.,且甲比乙的成绩稳定 D.,且甲比乙的成绩稳定5.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是( )A.这7天电影《你好,李焕英》每天的票房都超过2.5亿元B.这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小C.这7天电影《你好,李焕英》的当日票房占比逐渐增大D.这7天中有4天电影《唐人街探案3》的当日票房占比超过50%6.如图所示的程序框图,若输入x的值为2,输出v的值为16,则判断框内可以填入( )A.k≤3? B.k≤4? C.k≥3? D.k≥4?7.函数的零点个数为( )A. B.或 C.或 D.或或8.苏格兰数学家科林麦克劳林(ColinMaclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:,试根据此公式估计下面代数式的近似值为( )(可能用到数值ln2.414=0.881,ln3.414=1.23)A.3.23 B.2.881 C.1.881 D.1.239.函数(其中为自然对数的底数)的图象大致是( )A. B. C. D.10.甲乙两人相约10天内在某地会面,约定先到的人等候另一个人,经过三天后方可离开.若他们在期限内到达目的地是等可能的,则此二人会晤的概率是( )A.0.5 B.0.51 C.0.75 D.0.411.设函数是奇函数的导函数,.当时,,则使得成立的的取值范围是( )A. B. C. D.12.已知函数,,设为实数,若存在实数,使,则实数的取值范围为( )A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分. 请将答案填在答题卷中的相应位置.13.的边,为边上一动点,则的概率为__▲___14.复数(是虚数单位)是方程的一个根,则实数___▲___15.已知函数的定义域为,且的图像如右图所示,记的导函数为,则不等式的解集是____▲___16.若函数图象在点处的切线方程为,则的最小值为___▲___三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤.17.(本小题10分)(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于.(2)用分析法证明:当时,.18.(本小题12分)某企业有A,B两个分厂生产某种产品,规定该产品的某项质量指标值不低于120的为优质品.分别从A,B两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:(1)根据频率分布直方图,分别求出B分厂的质量指标值的中位数和平均数的估计值;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为这两个分厂的产品质量有差异? 19.(本小题12分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程. 20.(本小题12分)某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据如表所示:已知变量具有线性负相关关系,且,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求“理想数据”至少有一个的概率. 21.(本小题12分)已知函数.(1)求函数的最值;(2)求证:. 22.(本小题12分)已知函数为自然对数的底数).(1)若是的极值点,求的取值;(2)若只有一个零点,求的取值范围. 高2019级仁寿县第四学期期末模拟试卷 文科数学参考答案一、选择题1.C 2.B 3.B 4.A 5.D 6.A 7.A 8.B 9.C 10.B 11.C 12.B二、填空题 13. 14. 15. 16. 三、解答题17.解:(1)证明:假设三角形三个角都小于·············································1分那么····························································································2分而三角形内角和与假设矛盾·····························································3分所以三角形至少有一个内角大于或等于·····························································4分(2)证明:要证(),只需证·····················································5分则需证,即··········································································7分令,则,当时,;当时,,所以,即,则原不等式得证··················································10分 18.解:(1)B分厂的质量指标值;由,则的中位数为······································2分的平均数为·········6分 (2)列联表:···············································································7分由列联表可知的观测值为:··································11分所以有99%的把握认为两个分厂的产品质量有差异.················································12分 19.解:(1)由已知得,则,所以切线斜率,···························2分因为,所以切点坐标为,·····················································4分所以所求直线方程为,故曲线在处的切线方程为.·······················································5分(2)由已知得,设切点为,···················································6分则,即,得或,所以切点为或,切线的斜率为或,·················································10分所以切线方程为或即切线方程为或·······························································12分 20.解:(1)∵变量具有线性负相关关系,∴甲是错误的.······································1分又∵∴,满足方程,故乙是正确的.··········3分由得··································································5分(2)由计算可得“理想数据”有个,即,则用字母代表“理想数据”,其余检测数据用代表,·················································································7分所以从检测数中随机抽取个有,,,,,,,,,,,,,,共种,······························································································10分满足题意的有,,,,,,,,,,,共种,·········11分所以“理想数据”至少有一个的概率为····························································12分 21.解:(1)由题可知··································································1分 所以,当时,,单调递减;当时,,单调递增,所以··································································4分(2)方法一:,令,,故在上单调递增.············································5分又,又在上连续,使得,即,.(*)·····························7分随的变化情况如下:↘极小值↗. 由(*)式得,代入上式得. 令,,故在上单调递减.,又,.即.·················································································12分 方法二:,································································8分易得,, 所以,得证······················································12分 22.解:(1),······································································1分当时,,;,,此时恒成立,则不是函数的极值点·······················································································3分所以···············································································4分(2)只有一个零点,显然是,所以分为两种情况第1种情况:满足,此时·····················································6分第2种情况:无解,令,;①当时,,单调递增,故在上存在使得;·························································································8分②当时,方程显然无解;·······························································9分③当时,解得,当时,,单调递减;当时,,单调递增,则,即,所以·································································································11分综上所述:················································································12分
相关试卷
这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题,共10页。试卷主要包含了06,5亿元等内容,欢迎下载使用。
这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题,共9页。试卷主要包含了06,5亿元等内容,欢迎下载使用。
这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(理)试题,共9页。试卷主要包含了06,5亿元等内容,欢迎下载使用。