年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年辽宁省大连中山区四校联考中考数学全真模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年辽宁省大连中山区四校联考中考数学全真模拟试卷含解析第1页
    2021-2022学年辽宁省大连中山区四校联考中考数学全真模拟试卷含解析第2页
    2021-2022学年辽宁省大连中山区四校联考中考数学全真模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年辽宁省大连中山区四校联考中考数学全真模拟试卷含解析

    展开

    这是一份2021-2022学年辽宁省大连中山区四校联考中考数学全真模拟试卷含解析,共23页。试卷主要包含了已知抛物线y=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    2.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )

    A.0.7米 B.1.5米 C.2.2米 D.2.4米
    3.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )

    A.42 B.96 C.84 D.48
    4.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为
    A.1 B.3 C.0 D.1或3
    5.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转(  )

    A.36° B.45° C.72° D.90°
    6.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是(  )
    A. B. C. D.
    7.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为(  )

    A.4 B..5 C.6 D.8
    8.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    9.对于反比例函数,下列说法不正确的是(  )
    A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限
    C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小
    10.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(  )
    A. B. C. D.
    11.-的立方根是( )
    A.-8 B.-4 C.-2 D.不存在
    12.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是(  )

    A.主视图 B.俯视图 C.左视图 D.一样大
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.
    14.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.
    A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.
    B、按照小明的要求,小亮所搭几何体的表面积最小为__________.

    15.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.
    16.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.

    17.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是 .
    18.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)关于的一元二次方程有实数根.求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
    20.(6分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).

    (1)求抛物线F的解析式;
    (1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
    (3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
    ①判断△AA′B的形状,并说明理由;
    ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
    21.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
    22.(8分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若,求的值.

    23.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.

    24.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.

    25.(10分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.

    26.(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
    (1)这次知识竞赛共有多少名学生?
    (2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
    (3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

    27.(12分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

    请结合以上信息解答下列问题:m=   ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为   ;已知该校共有1200名学生,请你估计该校约有   名学生最喜爱足球活动.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    2、C
    【解析】
    在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
    【详解】
    在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.

    【点睛】
    本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
    3、D
    【解析】
    由平移的性质知,BE=6,DE=AB=10,
    ∴OE=DE﹣DO=10﹣4=6,
    ∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.
    故选D.
    【点睛】
    本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.
    4、B
    【解析】
    直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.
    【详解】
    ∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,
    ∴(m﹣1)+1+m2﹣5m+3=0,
    ∴m2﹣4m+3=0,
    ∴m=1或m=3,
    但当m=1时方程的二次项系数为0,
    ∴m=3.
    故答案选B.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.
    5、C
    【解析】
    分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
    详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
    故选C.
    点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
    6、C
    【解析】
    代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
    【详解】
    解:当y=0时,有(x-)(x-)=0,
    解得:x1=,x2=,
    ∴MaNa=-,
    ∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
    7、C
    【解析】
    解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
    ,
    即,
    解得EF=6,
    故选C.
    8、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    9、C
    【解析】
    由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,
    故选C.
    考点:反比例函数
    【点睛】
    本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化
    10、C
    【解析】
    画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
    【详解】
    解:画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:.
    故答案为C.
    【点睛】
    本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
    11、C
    【解析】
    分析:首先求出的值,然后根据立方根的计算法则得出答案.
    详解:∵,, ∴的立方根为-2,故选C.
    点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
    12、C
    【解析】
    如图,该几何体主视图是由5个小正方形组成,
    左视图是由3个小正方形组成,
    俯视图是由5个小正方形组成,
    故三种视图面积最小的是左视图,
    故选C.


    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    试题解析:如图,

    ∵菱形ABCD中,BD=8,AB=5,
    ∴AC⊥BD,OB=BD=4,
    ∴OA==3,
    ∴AC=2OA=6,
    ∴这个菱形的面积为:AC•BD=×6×8=1.
    14、A, 18, 1
    【解析】
    A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;
    B、分别得到前后面,上下面,左右面的面积,相加即可求解.
    【详解】
    A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,
    ∴该长方体需要小立方体4×32=36个,
    ∵小明用18个边长为1的小正方体搭成了一个几何体,
    ∴小亮至少还需36-18=18个小立方体,
    B、表面积为:2×(8+8+7)=1.
    故答案是:A,18,1.
    【点睛】
    考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.
    15、
    【解析】
    分析:根据题意可以列出相应的方程组,从而可以解答本题.
    详解:由题意可得,,
    故答案为
    点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    16、20
    【解析】
    在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.
    【详解】
    在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.
    故答案为20.
    【点睛】
    本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.
    17、m≤1.
    【解析】
    试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.
    考点:根的判别式.
    18、125
    【解析】
    解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
    ∵∠A=70°,∠B+∠C=180∘−∠A=110°
    ∵O在△ABC三边上截得的弦长相等,
    ∴OM=ON=OP,
    ∴O是∠B,∠C平分线的交点
    ∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.

    故答案为:125°
    【点睛】
    本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)的值为.
    【解析】
    (1)利用判别式的意义得到,然后解不等式即可;
    (2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足.
    【详解】
    解:(1)根据题意得,
    解得;
    (2)的最大整数为2,
    方程变形为,解得,
    ∵一元二次方程与方程有一个相同的根,
    ∴当时,,解得;
    当时,,解得,
    而,
    ∴的值为.
    【点睛】
    本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
    20、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
    【解析】
    (1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
    (1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
    (3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
    ①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
    ②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
    【详解】
    (1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
    ∴,解得:,
    ∴抛物线F的解析式为y=x1+x.
    (1)将y=x+m代入y=x1+x,得:x1=m,
    解得:x1=﹣,x1=,
    ∴y1=﹣+m,y1=+m,
    ∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
    (3)∵m=,
    ∴点A的坐标为(﹣,),点B的坐标为(,1).
    ∵点A′是点A关于原点O的对称点,
    ∴点A′的坐标为(,﹣).
    ①△AA′B为等边三角形,理由如下:
    ∵A(﹣,),B(,1),A′(,﹣),
    ∴AA′=,AB=,A′B=,
    ∴AA′=AB=A′B,
    ∴△AA′B为等边三角形.
    ②∵△AA′B为等边三角形,
    ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
    (i)当A′B为对角线时,有,
    解得,
    ∴点P的坐标为(1,);
    (ii)当AB为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,);
    (iii)当AA′为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,﹣1).
    综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
    21、(1);(2).
    【解析】
    (1)直接根据概率公式求解;
    (2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
    【详解】
    (1)正数为2,所以该球上标记的数字为正数的概率为;
    (2)画树状图为:

    共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    22、 (1)证明见解析;(2)
    【解析】
    分析:
    (1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
    (2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
    详解:
    (1)证明:连结OC,
    ∵DE与⊙O相切于点C,
    ∴OC⊥DE.
    ∵BD⊥DE,
    ∴OC∥BD. .
    ∴∠1=∠2,
    ∵OB=OC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    即BC平分∠DBA. .

    (2)∵OC∥BD,
    ∴△EBD∽△EOC,△DBM∽△OCM,.
    ∴,
    ∴,
    ∵,设EA=2k,AO=3k,
    ∴OC=OA=OB=3k.
    ∴.
    点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
    23、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;
    (2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.
    【详解】
    解:(1)∵DE⊥AB,BF⊥CD,
    ∴∠AED=∠CFB=90°,
    ∵四边形ABCD为平行四边形,
    ∴AD=BC,∠A=∠C,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(AAS);
    (2)∵四边形ABCD为平行四边形,
    ∴CD∥AB,
    ∴∠CDE+∠DEB=180°,
    ∵∠DEB=90°,
    ∴∠CDE=90°,
    ∴∠CDE=∠DEB=∠BFD=90°,
    则四边形BFDE为矩形.
    【点睛】
    本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.
    24、(1)画图见解析;(2)画图见解析;(3)20
    【解析】
    【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
    (2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
    (3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
    【详解】(1)如图所示;
    (2)如图所示;
    (3)结合网格特点易得四边形AA1 B1 A2是正方形,
    AA1=,
    所以四边形AA1 B1 A2的面积为:=20,
    故答案为20.

    【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.
    25、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
    【解析】
    (1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
    (2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
    (3)求出∠CDB=90°,再根据正方形的判定推出即可.
    【详解】
    (1)∵DE⊥BC,
    ∴∠DFP=90°,
    ∵∠ACB=90°,
    ∴∠DFB=∠ACB,
    ∴DE//AC,
    ∵MN//AB,
    ∴四边形ADEC为平行四边形,
    ∴CE=AD;
    (2)菱形,理由如下:
    在直角三角形ABC中,
    ∵D为AB中点,
    ∴BD=AD,
    ∵CE=AD,
    ∴BD=CE,
    ∴MN//AB,
    ∴BECD是平行四边形,
    ∵∠ACB=90°,D是AB中点,
    ∴BD=CD,(斜边中线等于斜边一半)
    ∴四边形BECD是菱形;
    (3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
    理由:∵∠A=45°,∠ACB=90°,
    ∴∠ABC=45°,
    ∵四边形BECD是菱形,
    ∴DC=DB,
    ∴∠DBC=∠DCB=45°,
    ∴∠CDB=90°,
    ∵四边形BECD是菱形,
    ∴四边形BECD是正方形,
    故答案为45°.
    【点睛】
    本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
    26、 (1)200;(2)72°,作图见解析;(3).
    【解析】
    (1)用一等奖的人数除以所占的百分比求出总人数;
    (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;
    (3)用获得一等奖和二等奖的人数除以总人数即可得出答案.
    【详解】
    解:(1)这次知识竞赛共有学生=200(名);
    (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),
    补图如下:

    “二等奖”对应的扇形圆心角度数是:360°×=72°;
    (3)小华获得“一等奖或二等奖”的概率是: =.
    【点睛】
    本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.
    27、(1)150,(2)36°,(3)1.
    【解析】
    (1)根据图中信息列式计算即可;
    (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
    (3)360°×乒乓球”所占的百分比即可得到结论;
    (4)根据题意计算即可.
    【详解】
    (1)m=21÷14%=150,
    (2)“足球“的人数=150×20%=30人,
    补全上面的条形统计图如图所示;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
    (4)1200×20%=1人,
    答:估计该校约有1名学生最喜爱足球活动.
    故答案为150,36°,1.

    【点睛】
    本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.

    相关试卷

    2023-2024学年辽宁省大连中山区四校联考数学八上期末达标检测模拟试题含答案:

    这是一份2023-2024学年辽宁省大连中山区四校联考数学八上期末达标检测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,的值是,若分式,则分式的值等于等内容,欢迎下载使用。

    2023年辽宁省大连市中山区中考数学一模试卷(含解析):

    这是一份2023年辽宁省大连市中山区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年辽宁省大连协作校中考联考数学试题含解析:

    这是一份2021-2022学年辽宁省大连协作校中考联考数学试题含解析,共27页。试卷主要包含了下列实数中,最小的数是,下列图形是中心对称图形的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map