2021-2022学年内蒙古巴彦淖尔市中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
2.如图是一个空心圆柱体,其俯视图是( )
A. B. C. D.
3.抛物线的顶点坐标是( )
A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)
4.下列说法正确的是( )
A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
D.若甲组数据的方差 S=" 0.01" ,乙组数据的方差 s= 0 .1 ,则乙组数据比甲组数据稳定
5.绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的粒数m
96
282
382
570
948
1904
2850
发芽的频率
0.960
0.940
0.955
0.950
0.948
0.952
0.950
下面有三个推断:
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
②根据上表,估计绿豆发芽的概率是0.95;
③若n为4000,估计绿豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A.① B.①② C.①③ D.②③
6.方程的解是
A.3 B.2 C.1 D.0
7.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( )
A.28 B.29 C.30 D.31
8.已知一个多边形的内角和是1080°,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
9.在0,-2,5,,-0.3中,负数的个数是( ).
A.1 B.2 C.3 D.4
10.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为( )kg.
A.180 B.200 C.240 D.300
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.
12.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
13.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
14.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______
15.如图,a∥b,∠1=40°,∠2=80°,则∠3= 度.
16.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=(x<0)的图象经过点A,S△BEC=8,则k=_____.
三、解答题(共8题,共72分)
17.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
18.(8分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
19.(8分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:
(1)在这次研究中,一共调查了 学生,并请补全折线统计图;
(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?
20.(8分)计算:+-2〡+6tan30°
21.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)
(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;
(2)补全两个统计图;
(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;
(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.
22.(10分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.
23.(12分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.
24.已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.
求证:; 若,,, 求的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
2、D
【解析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
该空心圆柱体的俯视图是圆环,如图所示:
故选D.
【点睛】
本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.
3、A
【解析】
已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.
【详解】
解:y=(x-2)2+3是抛物线的顶点式方程,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故选A.
【点睛】
此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.
4、C
【解析】
众数,中位数,方差等概念分析即可.
【详解】
A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
B、全国中学生人口多,只需抽样调查就行了,故是错误的;
C、这组数据的众数和中位数都是8,故是正确的;
D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
【点睛】
考核知识点:众数,中位数,方差.
5、D
【解析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
【详解】
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
故选D.
【点睛】
本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
6、A
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,
经检验x=3是分式方程的解.故选A.
7、C
【解析】
根据中位数的定义即可解答.
【详解】
解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,
最中间的两个数的平均数是:=30,
则这组数据的中位数是30;
故本题答案为:C.
【点睛】
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
8、D
【解析】
根据多边形的内角和=(n﹣2)•180°,列方程可求解.
【详解】
设所求多边形边数为n,
∴(n﹣2)•180°=1080°,
解得n=8.
故选D.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
9、B
【解析】
根据负数的定义判断即可
【详解】
解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
故选B.
10、B
【解析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
【详解】
解:设小李所进甜瓜的数量为,根据题意得:
,
解得:,
经检验是原方程的解.
答:小李所进甜瓜的数量为200kg.
故选:B.
【点睛】
本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1°
【解析】
根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
【详解】
∵△ABC≌△ADE,
∴∠BAC=∠DAE,AB=AD,
∴∠BAD=∠EAC=40°,
∴∠B=(180°-40°)÷2=1°,
故答案为1.
【点睛】
本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
12、1
【解析】
由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.
【详解】
解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.
故答案为1.
【点睛】
根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.
13、1
【解析】
根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
【详解】
∵点(a,b)在一次函数y=2x-1的图象上,
∴b=2a-1,
∴2a-b=1,
∴4a-2b=6,
∴4a-2b-1=6-1=1,
故答案为:1.
【点睛】
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
14、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
【解析】
根据图形的旋转和平移性质即可解题.
【详解】
解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
【点睛】
本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
15、120
【解析】
如图,
∵a∥b,∠2=80°,
∴∠4=∠2=80°(两直线平行,同位角相等)
∴∠3=∠1+∠4=40°+80°=120°.
故答案为120°.
16、1
【解析】
∵BD是Rt△ABC斜边上的中线,
∴BD=CD=AD,
∴∠DBC=∠ACB,
又∠DBC=∠OBE,∠BOE=∠ABC=90°,
∴△ABC∽△EOB,
∴
∴AB•OB=BC•OE,
∵S△BEC=×BC•OE=8,
∴AB•OB=1,
∴k=xy=AB•OB=1.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2).
【解析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
【详解】
解:(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°.
∴∠DOP=180°﹣120°=60°.
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°.
∴OD⊥DP.
∵OD为半径,
∴DP是⊙O切线.
(2)∵∠ODP=90°,∠P=30°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm.
∴图中阴影部分的面积
18、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
19、(1)200名;折线图见解析;(2)1210人.
【解析】
(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;
(2)利用样本估计总体的方法计算即可解答.
【详解】
(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).
补全折线统计图如下:
.
(2)2200×=1210(人).
答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.
【点睛】
本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.
20、10 +
【解析】
根据实数的性质进行化简即可计算.
【详解】
原式=9-1+2-+6×
=10-
=10 +
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
21、(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.
【解析】
(1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;
(2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;
(3)总人数乘以样本中A所占百分比可得;
(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.
【详解】
(1)这次被抽查的学生共有25÷50%=50人,
扇形统计图中,“A组”所对应的圆心度数为360°×=108°,
故答案为50、108°;
(2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,
补全图形如下:
(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;
(4)不正确,
因为在样本中浪费粮食的人数所占比例不是20%,
所以这种说法不正确.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
22、(1)证明见解析;(2)-2.
【解析】
分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;
(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.
详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.
∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,
∴无论p取何值此方程总有两个实数根;
(2)∵原方程的两根为x1、x2,
∴x1+x2=5,x1x2=6-p2-p.
又∵x12+x22-x1x2=3p2+1,
∴(x1+x2)2-3x1x2=3p2+1,
∴52-3(6-p2-p)=3p2+1,
∴25-18+3p2+3p=3p2+1,
∴3p=-6,
∴p=-2.
点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.
23、(1)证明见解析;(2);拓展:
【解析】
(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
拓展:对△ABD的外心位置进行推理,即可得出结论.
【详解】
(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
∴BD=CE,
∴BC-BD=BC-CE,即BE=CD,
∵∠B=∠C=40°,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS);
(2)解:∵∠B=∠C=40°,AB=BE,
∴∠BEA=∠EAB=(180°-40°)=70°,
∵BE=CD,AB=AC,
∴AC=CD,
∴∠ADC=∠DAC=(180°-40°)=70°,
∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
拓展:
解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
∴∠BAD=140°-∠BDA<90°.
∴∠BDA>50°,
又∵∠BDA<90°,
∴50°<∠BDA<90°.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
24、(1)详见解析;(2)
【解析】
(1)根据题意平分可得,从而证明即可解答
(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答
【详解】
(1)证明:平分
又
又
(2)
四边形是平行四边形
,
为等边三角形
过点作延长线于点.
在中,
【点睛】
此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线
内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了若等式,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,若=1,则符合条件的m有等内容,欢迎下载使用。
2022年内蒙古巴彦淖尔市磴口县中考数学考试模拟冲刺卷含解析: 这是一份2022年内蒙古巴彦淖尔市磴口县中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中,正确的个数共有,下列运算正确的是等内容,欢迎下载使用。