2021-2022学年晋城市重点中学中考数学考前最后一卷含解析
展开
这是一份2021-2022学年晋城市重点中学中考数学考前最后一卷含解析,共18页。试卷主要包含了下列几何体中三视图完全相同的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.4的平方根是( )
A.2 B.±2 C.8 D.±8
2.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
3.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是( )
A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×1010
4.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为( )
A.1 B.4 C.8 D.12
5.下列几何体中三视图完全相同的是( )
A. B. C. D.
6.下列二次根式中,为最简二次根式的是( )
A. B. C. D.
7.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )
A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
8.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户)
1
2
3
4
月用电量(度/户)
30
42
50
51
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是50 B.众数是51 C.方差是42 D.极差是21
9.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )
A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△OBC的面积为____.
12.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.
A.如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为__________.
B.比较__________的大小.
14.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.
15.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
16.请写出一个比2大且比4小的无理数:________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:,其中x满足x2-2x-2=0.
18.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
19.(8分)列方程解应用题:
为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
20.(8分)
21.(8分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
22.(10分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)写出满足条件的k的最大整数值,并求此时方程的根.
23.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
(2)化简:÷(1﹣)
24.某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
依据平方根的定义求解即可.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选B.
【点睛】
本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
2、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
3、B
【解析】
根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.
【详解】
29.8亿用科学记数法表示为: 29.8亿=2980000000=2.98×1.
故选B.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、B
【解析】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
【详解】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
则x1、x2为方程ax2+bx+c=0的两根,
∴x1+x2=-,x1•x2=,
∴AB=|x1-x2|====,
∵△ABP组成的三角形恰为等腰直角三角形,
∴||=•,
=,
∴b2-1ac=1.
故选B.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
5、A
【解析】
找到从物体正面、左面和上面看得到的图形全等的几何体即可.
【详解】
解:A、球的三视图完全相同,都是圆,正确;
B、圆柱的俯视图与主视图和左视图不同,错误;
C、圆锥的俯视图与主视图和左视图不同,错误;
D、四棱锥的俯视图与主视图和左视图不同,错误;
故选A.
【点睛】
考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
6、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
7、D
【解析】
【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
∵x1+x2<0,x1x2<0,
∴x1、x2异号,且负数的绝对值大,故C选项错误;
∵x1为一元二次方程2x2+2x﹣1=0的根,
∴2x12+2x1﹣1=0,
∴x12+x1=,故D选项正确,
故选D.
【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
8、C
【解析】
试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
故选C.
考点:1.方差;2.中位数;3.众数;4.极差.
9、C
【解析】
【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
【详解】设每个小箱子装洗衣粉x千克,由题意得:
4x+2=36,
解得:x=8.5,
即每个小箱子装洗衣粉8.5千克,
故选C.
【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
10、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、6
【解析】
根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△OBC的面积.
【详解】
设点A的坐标为(a,),点B的坐标为(b,),
∵点C是x轴上一点,且AO=AC,
∴点C的坐标是(2a,0),
设过点O(0,0),A(a, )的直线的解析式为:y=kx,
∴=k⋅a,
解得k=,
又∵点B(b, )在y=x上,
∴=⋅b,解得, =或=− (舍去),
∴S△OBC==6.
故答案为:6.
【点睛】
本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.
12、
【解析】
∵在Rt△ABC中,BC=6,sinA=
∴AB=10
∴.
∵D是AB的中点,∴AD=AB=1.
∵∠C=∠EDA=90°,∠A=∠A
∴△ADE∽△ACB,
∴
即
解得:DE=.
13、5 >
【解析】
A:根据平移的性质得到OA′=OA,OO′=BB′,根据点A′在直线求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.
【详解】
A:由平移的性质可知,OA′=OA=4,OO′=BB′.因为点A′在直线上,将y=4代入,得到x=5.所以OO′=5,又因为OO′=BB′,所以点B与其对应点B′间的距离为5.故答案为5.
B:sin53°=cos(90°-53°)=cos37°,
tan37°= ,
根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,
即tan37°> ,cos37°< ,
又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.
【点睛】
本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.
14、1.
【解析】
在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
【详解】
解:Rt△ABC中,∵BC=4,tanA=
∴
则
故答案为1.
【点睛】
考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
15、500
【解析】
设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
【详解】
解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
故答案为:500.
【点睛】
本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
16、(或)
【解析】
利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
【详解】
设无理数为,,所以x的取值在4~16之间都可,故可填
【点睛】
本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
三、解答题(共8题,共72分)
17、
【解析】
分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得.
详解:原式=
=
=,
∵x2-2x-2=0,
∴x2=2x+2=2(x+1),
则原式=.
点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
18、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
19、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【解析】
设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
【详解】
解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
根据题意得:
解得:x=1.
经检验:x=1是原方程的解且符合实际问题的意义.
∴1.2x=1.2×1=2.
答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【点睛】
此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
20、﹣2<x<2.
【解析】
分别解不等式,进而得出不等式组的解集.
【详解】
解①得:x<2
解②得:x>﹣2.
故不等式组的解集为:﹣2<x<2.
【点睛】
本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.
21、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
22、(1)(2) ,
【解析】
【分析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k的不等式组,解不等式组即可得;
(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.
【详解】(1) 依题意,得,
解得且;
(2) ∵是小于9的最大整数,
∴
此时的方程为,
解得,.
【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.
23、(1)5(2)
【解析】
(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
【详解】
解:(1)原式=4﹣2+2+2+1﹣4×
=7﹣2
=5;
(2)原式=÷
=•
=.
【点睛】
本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
24、(1)50名;(2)16名;见解析;(3)56名.
【解析】
试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.
试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.
(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.
补全图形如图所示:
(3)700×(4÷50)=56(名)
答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.
考点:统计图.
相关试卷
这是一份广州市重点中学2021-2022学年中考数学考前最后一卷含解析,共18页。试卷主要包含了已知点P等内容,欢迎下载使用。
这是一份迪庆市重点中学2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了估计-1的值在,化简的结果是等内容,欢迎下载使用。
这是一份2021-2022学年益阳市重点中学中考数学考前最后一卷含解析,共24页。试卷主要包含了若分式有意义,则x的取值范围是,下列运算结果正确的是等内容,欢迎下载使用。