|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年黑龙江省大庆市中考数学试卷解析版
    立即下载
    加入资料篮
    2022年黑龙江省大庆市中考数学试卷解析版01
    2022年黑龙江省大庆市中考数学试卷解析版02
    2022年黑龙江省大庆市中考数学试卷解析版03
    还剩43页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年黑龙江省大庆市中考数学试卷解析版

    展开
    这是一份2022年黑龙江省大庆市中考数学试卷解析版,共46页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年黑龙江省大庆市中考数学试卷
    一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)
    1.(3分)2022的倒数是(  )
    A. B.2022 C.﹣2022 D.﹣
    2.(3分)地球上的陆地面积约为149000000km2,数字149000000用科学记数法表示为(  )
    A.1.49×107 B.1.49×108 C.1.49×109 D.1.49×1010
    3.(3分)实数c,d在数轴上的对应点如图所示,则下列式子正确的是(  )


    A.c>d B.|c|>|d| C.﹣c<d D.c+d<0
    4.(3分)观察下列图形,其中既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    5.(3分)小明同学对数据12、22、36、4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是(  )
    A.平均数 B.标准差 C.方差 D.中位数
    6.(3分)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是(  )
    A.60π B.65π C.90π D.120π
    7.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为(  )

    A.108° B.109° C.110° D.111°
    8.(3分)下列说法不正确的是(  )
    A.有两个角是锐角的三角形是直角或钝角三角形
    B.有两条边上的高相等的三角形是等腰三角形
    C.有两个角互余的三角形是直角三角形
    D.底和腰相等的等腰三角形是等边三角形
    9.(3分)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点,则点Q运动路径的长为(  )
    A.4π B.8 C.8π D.16
    10.(3分)函数y=[x]叫做高斯函数,其中x为任意实数,[x]表示不超过x的最大整数.定义{x}=x﹣[x],则下列说法正确的个数为(  )
    ①[﹣4.1]=﹣4;
    ②{3.5}=0.5;
    ③高斯函数y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2;
    ④函数y={x}中,当2.5<x≤3.5时,0≤y<1.
    A.0 B.1 C.2 D.3
    二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
    11.(3分)函数y=的自变量x的取值范围为    .
    12.(3分)写出一个过点D(0,1)且y随x增大而减小的一次函数关系式    .
    13.(3分)满足不等式组的整数解是    .
    14.(3分)不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为    .
    15.(3分)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为    .
    16.(3分)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是    .



    17.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为    .
    18.(3分)如图,正方形ABCD中,点E,F分别是边AB,BC上的两个动点,且正方形ABCD的周长是△BEF周长的2倍.连接DE,DF分别与对角线AC交于点M,N,给出如下几个结论:①若AE=2,CF=3,则EF=4;②∠EFN+∠EMN=180°;③若AM=2,CN=3,则MN=4;④若=2,BE=3,则EF=4.其中正确结论的序号为    .

    三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
    19.(4分)计算:|﹣2|×(3﹣π)0+.
    20.(4分)先化简,再求值:(﹣a)÷.其中a=2b,b≠0.
    21.(5分)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?
    22.(6分)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB.飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CD为1000m,且点D,A,B在同一水平直线上,试求这条江的宽度AB(结果精确到1m,参考数据:≈1.4142,≈1.7321).

    23.(7分)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:
    抽取的200名学生成绩统计表
    组别
    海选成绩
    人数
    A组
    50≤x<60
    10
    B组
    60≤x<70
    30
    C组
    70≤x<80
    40
    D组
    80≤x<90
    a
    E组
    90≤x≤100
    70
    请根据所给信息解答下列问题:
    (1)填空:①a=   ,②b=   ,③θ=   度;
    (2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;
    (3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?

    24.(7分)如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF.连接AE,CD.
    (1)求证:四边形ABDF是平行四边形;
    (2)若AE=AC,求证:AB=DB.

    25.(7分)已知反比例函数y=和一次函数y=x﹣1,其中一次函数图象过(3a,b),(3a+1,b+)两点.
    (1)求反比例函数的关系式;
    (2)如图,函数y=x,y=3x的图象分别与函数y=(x>0)图象交于A,B两点,在y轴上是否存在点P,使得△ABP周长最小?若存在,求出周长的最小值;若不存在,请说明理由.

    26.(8分)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.
    (1)图中点P所表示的实际意义是    ,每增种1棵果树时,每棵果树平均产量减少    kg;
    (2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;
    (3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?

    27.(9分)如图,已知BC是△ABC外接圆⊙O的直径,BC=16.点D为⊙O外的一点,∠ACD=∠B.点E为AC中点,弦FG过点E,EF=2EG,连接OE.
    (1)求证:CD是⊙O的切线;
    (2)求证:(OC+OE)(OC﹣OE)=EG•EF;
    (3)当FG∥BC时,求弦FG的长.

    28.(9分)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.
    (1)求b的值;
    (2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;
    ②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;
    (3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.



    2022年黑龙江省大庆市中考数学试卷
    参考答案与试题解析
    一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)
    1.(3分)2022的倒数是(  )
    A. B.2022 C.﹣2022 D.﹣
    【分析】根据倒数的意义,即可解答.
    【解答】解:2022的倒数是,
    故选:A.
    【点评】本题考查了倒数,熟练掌握倒数的意义是解题的关键.
    2.(3分)地球上的陆地面积约为149000000km2,数字149000000用科学记数法表示为(  )
    A.1.49×107 B.1.49×108 C.1.49×109 D.1.49×1010
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
    【解答】解:149000000=1.49×108,
    故选:B.
    【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3.(3分)实数c,d在数轴上的对应点如图所示,则下列式子正确的是(  )


    A.c>d B.|c|>|d| C.﹣c<d D.c+d<0
    【分析】根据实数c,d在数轴上的对应点的位置可知,c<0,d>0且|c|<|d|,然后逐一判断即可解答.
    【解答】解:由题意得:
    c<0,d>0且|c|<|d|,
    A、c<d,故A不符合题意;
    B、|c|<|d|,故B不符合题意;
    C、﹣c<d,故C符合题意;
    D、c+d>0,故D不符合题意;
    故选:C.
    【点评】本题考查了实数与数轴,绝对值,根据实数c,d在数轴上的对应点的位置得出:c<0,d>0且|c|<|d|是解题的关键.
    4.(3分)观察下列图形,其中既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
    【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.是轴对称图形,不是中心对称图形,故本选项不符合题意;
    C.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
    5.(3分)小明同学对数据12、22、36、4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是(  )
    A.平均数 B.标准差 C.方差 D.中位数
    【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.
    【解答】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36,与被涂污数字无关.
    故选:D.
    【点评】本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握中位数的定义.
    6.(3分)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是(  )
    A.60π B.65π C.90π D.120π
    【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆锥侧面展开图的面积.
    【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,
    ∴圆锥侧面展开图的面积为:=65π.
    故选:B.
    【点评】本题主要考查圆锥的计算,掌握侧面展开图与底面圆的关系是解题关键.
    7.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为(  )

    A.108° B.109° C.110° D.111°
    【分析】由平行四边形的性质和折叠的性质得∠ABD=∠CDB=∠EBD,再由三角形的外角性质得∠ABD=∠CDB=28°,然后由三角形内角和定理即可得出结论.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠ABD=∠CDB,
    由折叠的性质得:∠EBD=∠ABD,
    ∴∠ABD=∠CDB=∠EBD,
    ∵∠1=∠CDB+∠EBD=56°,
    ∴∠ABD=∠CDB=28°,
    ∴∠A=180°﹣∠2﹣∠ABD=180°﹣42°﹣28°=110°,
    故选:C.
    【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理等知识,熟练掌握平行四边形的性质和折叠的性质是解题的关键.
    8.(3分)下列说法不正确的是(  )
    A.有两个角是锐角的三角形是直角或钝角三角形
    B.有两条边上的高相等的三角形是等腰三角形
    C.有两个角互余的三角形是直角三角形
    D.底和腰相等的等腰三角形是等边三角形
    【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.
    【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,
    ∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;
    有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;
    有两个角互余的三角形是直角三角形,故C正确,不符合题意;
    底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;
    故选:A.
    【点评】本题考查三角形及分类,掌握直角三角形,等腰三角形,等边三角形等概念是解题的关键.
    9.(3分)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点,则点Q运动路径的长为(  )
    A.4π B.8 C.8π D.16
    【分析】分两种情形:当点N在x轴的正半轴上时,过点Q作QR⊥ON于点R,QT⊥OM于点T.设Q(x,y).判断出点Q的运动轨迹,同法求出点Q在x轴的负半轴上时,点Q的运动轨迹的长,可得结论.
    【解答】解:如图,当点N在x轴的正半轴上时,过点Q作QR⊥ON于点R,QT⊥OM于点T.设Q(x,y).

    ∵QM=QN,QT∥ON,QR∥OM,
    ∴QT=ON,QR=OM,
    ∴QT+QR=(OM+ON)=4,
    ∴x+y=4,
    ∴y=﹣x+4,
    ∴点Q在直线y=﹣x+4上运动,
    ∵直线y=﹣x+y与坐标轴交于(0,4),(4,0),
    ∴点Q运动路径的长==4,
    当点N在x轴的负半轴上时,同法可得点Q运动路径的长==4,
    综上所述,点Q的运动路径的长为8,
    故选:B.
    【点评】本题考查轨迹,三角形中位线定理,一次函数的性质等知识,解题的关键是正确寻找点Q的运动轨迹,学会构建一次函数,探究轨迹,属于中考常考题型.
    10.(3分)函数y=[x]叫做高斯函数,其中x为任意实数,[x]表示不超过x的最大整数.定义{x}=x﹣[x],则下列说法正确的个数为(  )
    ①[﹣4.1]=﹣4;
    ②{3.5}=0.5;
    ③高斯函数y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2;
    ④函数y={x}中,当2.5<x≤3.5时,0≤y<1.
    A.0 B.1 C.2 D.3
    【分析】①根据“定义[x]为不超过x的最大整数”进行计算;
    ②根据定义{x}=x﹣[x]进行计算;
    ③根据“定义[x]为不超过x的最大整数”进行计算;
    ④可以代入特殊值或边界点确定y的取值.
    【解答】解:①根据题意可得:[﹣4.1]=﹣5,错误;
    ②∵[3.5]=3,
    ∴{3.5}=3.5﹣[3.5]=3.5﹣3=0.5,正确;
    ③高斯函数y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2,正确;
    ④函数y={x}=x﹣[x]中,在2.5<x≤3.5中取x=3.5时,y=3.5﹣3=0.5,当x=2.99时,y=2.99﹣2=0.99,所以当2.5<x≤3.5时,0.5≤y<1,错误.
    正确的命题有②③.
    故选:C.
    【点评】本题考查了新定义:取整函数和一元一次不等式的应用,解决本题的关键是理解新定义.新定义解题是近几年常考的题型.
    二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
    11.(3分)函数y=的自变量x的取值范围为  x≥﹣ .
    【分析】根据二次根式有意义的条件:被开方数是非负数.列不等式求x的范围.
    【解答】解:根据题意得:2x+3≥0,
    解得:x≥﹣.
    【点评】主要考查了函数自变量的取值范围的确定.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    12.(3分)写出一个过点D(0,1)且y随x增大而减小的一次函数关系式  y=﹣x+1(答案不唯一) .
    【分析】先设一次函数关系式为:y=kx+b,根据增减性可知k<0,然后再把D(0,1)代入关系式进行计算即可解答.
    【解答】解:设一次函数关系式为:y=kx+b,
    ∵y随x增大而减小,
    ∴k<0,
    取k=﹣1,
    ∵一次函数过点D(0,1),
    ∴把D(0,﹣1)代入y=﹣x+b中可得:
    ﹣1=b,
    ∴一次函数关系式为:y=﹣x+1,
    故答案为:y=﹣x+1(答案不唯一).
    【点评】本题考查了一次函数的性质,一次函数图象上点的坐标特征,熟练掌握一次函数的性质是解题的关键.
    13.(3分)满足不等式组的整数解是  2 .
    【分析】按照解一元一次不等式组的步骤,进行计算即可解答.
    【解答】解:,
    解不等式①得:x≤2.5,
    解不等式②得:x>1,
    ∴原不等式组的解集为:1<x≤2.5,
    ∴该不等式组的整数解为:2,
    故答案为:2.
    【点评】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组是解题的关键.
    14.(3分)不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为   .
    【分析】画树状图,共有9种等可能的结果,其中两次所取卡片的编号之积为奇数的结果有4种,再由概率公式求解即可.
    【解答】解:画树状图如下:

    共有9种等可能的结果,其中两次所取卡片的编号之积为奇数的结果有4种,
    ∴两次所取卡片的编号之积为奇数的概率为,
    故答案为:.
    【点评】此题考查了树状图法求概率.正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.
    15.(3分)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为  或﹣. .
    【分析】根据完全平方公式a2±2ab+b2=(a±b)2,可得(2t﹣1)ab=±(2×2)ab,计算即可得出答案.
    【解答】解:根据题意可得,
    (2t﹣1)ab=±(2×2)ab,
    即2t﹣1=±4,
    解得:t=或t=.
    故答案为:或﹣.
    【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式进行求解是解决本题的关键.
    16.(3分)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是  49 .



    【分析】从数字找规律,进行计算即可解答.
    【解答】解:由题意得:
    第一个图案中的“”的个数是:4+3×0,
    第二个图案中的“”的个数是:7=4+3×1,
    第三个图案中的“”的个数是:10=4+3×2,
    ...
    ∴第16个图案中的“”的个数是:4+3×15=49,
    故答案为:49.




    【点评】本题考查了规律型:图形的变化类,从数字找规律是解题的关键.
    17.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为  1或﹣ .
    【分析】函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,分情况讨论,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,得出Δ=0,m≠0.
    【解答】解:∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,
    ①过坐标原点,m﹣1=0,m=1,
    ②与x、y轴各一个交点,
    ∴Δ=0,m≠0,
    (3m)2﹣4m(m﹣1)=0,
    解得m=0或m=﹣,
    综上所述:m的值为1或﹣.
    【点评】本题考查抛物线与x轴的交点、二次函数的性质,掌握函数的图象与坐标轴恰有两个公共点的情况,看清题意,分情况讨论是解题关键.
    18.(3分)如图,正方形ABCD中,点E,F分别是边AB,BC上的两个动点,且正方形ABCD的周长是△BEF周长的2倍.连接DE,DF分别与对角线AC交于点M,N,给出如下几个结论:①若AE=2,CF=3,则EF=4;②∠EFN+∠EMN=180°;③若AM=2,CN=3,则MN=4;④若=2,BE=3,则EF=4.其中正确结论的序号为  ② .

    【分析】根据已知条件可得EF=AE+FC,即可判断①,进而推出∠EDF=45°,判断②正确,作DG⊥EF于点G,连接GM,GN,证明△GMN是直角三角形,结合勾股定理验证③,证明∠BEF=∠MNG=30°,即可判断④.
    【解答】解:∵正方形ABCD的周长是△BEF周长的2倍,
    ∴BE+BF+EF=AB+BC,
    ∴EF=AE+FC,
    若AE=2,CF=3,则EF=2+3=5,故①错误;
    如图,在BA的延长线上取点H,使得AH=CF,

    在正方形ABCD中,AD=CD,∠HAD=∠FCD=90°,
    在△AHD和△CFD中,

    ∴△AHD≌△CFD(SAS),
    ∴∠CDF=∠ADH,HD=DF,∠H=∠DFC,
    又∵EF=AE+CF,
    ∴EF=AE+AH=EH,
    在△DEH和△DEF中,

    ∴△DEH≌△DEF(SSS),
    ∴∠HDE=∠FDE,∠H=∠EFD,∠HED=∠FED,
    ∵∠CDF+∠ADF=∠ADH+∠ADF=∠HDF=90°
    ∴∠EDF=∠HDE=45°,
    ∵∠H=∠DFC=∠DFE,∠EMN=∠HED+∠EAM=45°+∠DEF,
    ∴∠EFN+∠EMN=∠DFC+45°+∠DEF=∠DFC+∠EDF+∠DEF=180°,
    则∠EFN+∠EMN=180°,故②正确;
    如图,作DG⊥EF于点G,连接GM,GN,

    在△AED和△GED中,

    ∴△AED≌△GED(AAS),
    同理,△GDF≌△CDF(AAS),
    ∴AG=DG=CF,∠ADE=∠GDE,∠GDF=∠CDF,
    ∴点A,G关于DE对称轴,C,G关于DF对称,
    ∴GM=AM,GN=CN,∠EGM=∠EAM=45°,∠NGF=∠NCF=45°,
    ∴∠MGN=90°,即△GMN是直角三角形,
    若AM=2,CN=3,
    ∴GM=2,GN=3,
    在Rt△GMN中,MN==,故③错误;
    ∵MG=AM,且=2,BE=3,
    在Rt△GMN中,sin∠MNG===,
    ∴∠MNG=30°,
    ∵∠EFN+∠EMN=180°,∠EMN+∠AME=180°,
    且∠CFN=∠EFN,
    ∴∠AME=∠CFN,
    ∴2∠AEM=2∠CFN,
    即∠AMG=∠CFG,
    ∴∠GMN=∠BFE,
    ∴∠BEF=∠MNG=30°,
    ∴cos∠BEF=cos∠MNG==,
    ∴EF=2,故④错误,
    综上,正确结论的序号为②,
    故答案为:②.
    【点评】本题考查了正方形的性质,轴对称的性质,解直角三角形,全等三角形的性质与判定,题目有一定综合性,通过添加辅助线构造全等三角形是解题关键.
    三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
    19.(4分)计算:|﹣2|×(3﹣π)0+.
    【分析】先化简各式,然后再进行计算即可解答.
    【解答】解:|﹣2|×(3﹣π)0+
    =(2﹣)×1+(﹣2)
    =2﹣﹣2
    =﹣.
    【点评】本题考查了实数的运算,零指数幂,绝对值,立方根,估算无理数的大小,准确熟练地化简各式是解题的关键.
    20.(4分)先化简,再求值:(﹣a)÷.其中a=2b,b≠0.
    【分析】先算括号里,再算括号外,然后把a=2b代入化简后的式子进行计算即可解答.
    【解答】解:(﹣a)÷
    =•
    =•
    =,
    当a=2b时,原式===.
    【点评】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.
    21.(5分)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?
    【分析】设现在平均每天生产x个零件,根据现在生产800个零件所需时间与原计划生产600个零件所需时间相同得:=,解方程并检验,即可得答案.
    【解答】解:设现在平均每天生产x个零件,
    根据题意得:=,
    解得x=80,
    经检验,x=80是原方程的解,且符合题意,
    ∴x=80,
    答:现在平均每天生产80个零件.
    【点评】本题考查分式方程的应用,解题的关键是读懂题意,找到等量关系列方程.
    22.(6分)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB.飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CD为1000m,且点D,A,B在同一水平直线上,试求这条江的宽度AB(结果精确到1m,参考数据:≈1.4142,≈1.7321).

    【分析】根据题意可得∠CAD=45°,∠CBD=30°,然后分别在Rt△ACD和Rt△BCD中,利用锐角三角函数的定义求出BD,AD的长,进行计算即可解答.
    【解答】解:由题意得:
    ∠CAD=45°,∠CBD=30°,
    在Rt△ACD中,CD=1000m,
    ∴AD==1000(m),
    在Rt△BCD中,BD===1000(m),
    ∴AB=BD﹣AD=100﹣1000≈732(m),
    ∴这条江的宽度AB约为732m.
    【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.
    23.(7分)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:
    抽取的200名学生成绩统计表
    组别
    海选成绩
    人数
    A组
    50≤x<60
    10
    B组
    60≤x<70
    30
    C组
    70≤x<80
    40
    D组
    80≤x<90
    a
    E组
    90≤x≤100
    70
    请根据所给信息解答下列问题:
    (1)填空:①a= 50 ,②b= 15 ,③θ= 72 度;
    (2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;
    (3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?

    【分析】(1)根据频数分布表和扇形统计图中的数据,可以计算出a、b、θ的值;
    (2)根据加权平均数的计算方法,可以计算出被选取的200名学生成绩的平均数;
    (3)根据频数分布表中的数据,可以计算出该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人.
    【解答】解:(1)a=200﹣10﹣30﹣40﹣70=50,
    b%=×100%=15%,
    θ=360°×=72°,
    故答案为:50,15,72;
    (2)=82(分),
    即估计被选取的200名学生成绩的平均数是82分;
    (3)2000×=700(人),
    即估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有700人.
    【点评】本题考查频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    24.(7分)如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF.连接AE,CD.
    (1)求证:四边形ABDF是平行四边形;
    (2)若AE=AC,求证:AB=DB.

    【分析】(1)根据等式的性质可得BC=EF,从而利用SSS证明△ABC≌△DFE,然后利用全等三角形的性质可得∠ABC=∠DFE,从而可得AB∥DF,即可解答;
    (2)连接AD交BF于点O,利用平行四边形的性质可得OB=OD,从而可得OE=OC,再利用等腰三角形的性质可得AO⊥EC,然后证明四边形ABDF是菱形,即可解答.
    【解答】证明:(1)∵EB=CF,
    ∴EB+EC=CF+EC,
    ∴BC=EF,
    ∵AB=DF,AC=DE,
    ∴△ABC≌△DFE(SSS),
    ∴∠ABC=∠DFE,
    ∴AB∥DF,
    ∴四边形ABDF是平行四边形;
    (2)连接AD交BF于点O,

    ∵四边形ABDF是平行四边形,
    ∴OB=OD,
    ∵BE=CF,
    ∴OB﹣BE=OF﹣CF,
    ∴OE=OC,
    ∵AE=AC,
    ∴AO⊥EC,
    ∴四边形ABDF是菱形,
    ∴AB=BD.

    【点评】本题考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及菱形的判定与性质是解题的关键.
    25.(7分)已知反比例函数y=和一次函数y=x﹣1,其中一次函数图象过(3a,b),(3a+1,b+)两点.
    (1)求反比例函数的关系式;
    (2)如图,函数y=x,y=3x的图象分别与函数y=(x>0)图象交于A,B两点,在y轴上是否存在点P,使得△ABP周长最小?若存在,求出周长的最小值;若不存在,请说明理由.

    【分析】(1)把(3a,b),(3a+1,b+)代入y=x﹣1中,列出方程组进行计算即可解答;
    (2)作点B关于y轴的对称点B′,连接AB′交y轴于点P,连接BP,此时AP+BP的最小,即△ABP周长最小,先求出A,B两点坐标,从而求出AB的长,
    再根据点B与点B′关于y轴对称,求出B′的坐标,从而求出AB′的长,进而求出△ABP周长的最小值.
    【解答】解:(1)把(3a,b),(3a+1,b+)代入y=x﹣1中可得:

    解得:k=3,
    ∴反比例函数的关系式为:y=;
    (2)存在,
    作点B关于y轴的对称点B′,连接AB′交y轴于点P,连接BP,此时AP+BP的最小,即△ABP周长最小,

    由题意得:,
    解得:或,
    ∴A(1,3),
    由题意的:,
    解得:或,
    ∴B(3,1),
    ∴AB=2,
    ∵点B与点B′关于y轴对称,
    ∴B′(﹣1,3),BP=B′P,
    ∴AB′=2,
    ∴AP+BP=AP+B′P=AB′=2,
    ∴AP+BP的最小值为2,
    ∴△ABP周长最小值=2+2,
    ∴△ABP周长的最小值为2+2.

    【点评】本题考查了待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    26.(8分)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.
    (1)图中点P所表示的实际意义是  增种果树28棵,每棵果树平均产量为66kg ,每增种1棵果树时,每棵果树平均产量减少   kg;
    (2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;
    (3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?

    【分析】(1)根据题意可知点P所表示的实际意义,列算式求出每增种1棵果树时,每棵果树平均产量减少多少kg;
    (2)先求出A点坐标,再求出y与x之间的函数关系式,再求出自变量x的取值范围;
    (3)根据题意写出二次函数解析式,根据其性质,求出当增种果树多少棵时,果园的总产量w(kg)最大,及最大产量是多少.
    【解答】解:(1)根据题意可知:点P所表示的实际意义是增种果树28棵,每棵果树平均产量为66kg,
    (75﹣66)÷(28﹣10)=,
    ∴每增种1棵果树时,每棵果树平均产量减少kg,
    故答案为:增种果树28棵,每棵果树平均产量为66kg,kg;
    (2)
    设在10棵的基础上增种m棵,
    根据题意可得m=75﹣40,
    解得m=70,
    ∴A(80,40),
    设y与x之间的函数关系式:y=kx+b,
    把P(28,66),A(80,40),

    解得k=﹣,b=80,
    ∴y与x之间的函数关系式:y=﹣x+80;
    自变量x的取值范围:0≤x≤80;
    (3)设增种果树a棵,
    W=(60+a)(﹣0.5a+80)
    =﹣0.5a2+50a+4800,
    ∵﹣0.5<0,
    ∴a=﹣=50,
    W最大=6050,
    ∴当增种果树50棵时,果园的总产量w(kg)最大,最大产量是6050kg.
    【点评】本题考查了二次函数的应用,掌握用待定系数法求二次函数解析式,用二次函数的性质求出最大产量是解题关键.
    27.(9分)如图,已知BC是△ABC外接圆⊙O的直径,BC=16.点D为⊙O外的一点,∠ACD=∠B.点E为AC中点,弦FG过点E,EF=2EG,连接OE.
    (1)求证:CD是⊙O的切线;
    (2)求证:(OC+OE)(OC﹣OE)=EG•EF;
    (3)当FG∥BC时,求弦FG的长.

    【分析】(1)由BC是△ABC外接圆⊙O的直径,得∠ABC+∠ACB=90°,根据∠ACD=∠B,即得∠BCD=90°,从而CD是⊙O的切线;
    (2)连接AF,CG,证明△AEF∽△GEC,可得AE•CE=EG•EF,根据E为AC的中点,有AE=CE,OE⊥AC,即可得OC2﹣OE2=EG•EF,(OC+OE)(OC﹣OE)=EG•EF;
    (3)过O作ON⊥FG于N,延长EG交CD于M,由四边形MNOC是矩形,得MN=OC=BC=8,根据EF=2EG,可得NG=EG,NE=EG,EM=MN﹣NE=8﹣EG,因CE2=EG•EF=2EG2,可得2EG2﹣(8﹣EG)2=(82﹣2EG2)﹣(EG)2,解得EG即可得FG=3EG=3﹣3.
    【解答】(1)证明:∵BC是△ABC外接圆⊙O的直径,
    ∴∠BAC=90°,
    ∴∠ABC+∠ACB=90°,
    ∵∠ACD=∠B,
    ∴∠ACD+∠ACB=90°,即∠BCD=90°,
    ∴BC⊥CD,
    ∵OC是⊙O的半径,
    ∴CD是⊙O的切线;
    (2)证明:连接AF,CG,如图:

    ∵=,
    ∴∠AFE=∠GCE,
    ∵∠AEF=∠GEC,
    ∴△AEF∽△GEC,
    ∴=,
    ∴AE•CE=EG•EF,
    ∵E为AC的中点,
    ∴AE=CE,OE⊥AC,
    ∴CE2=OC2﹣OE2,AE•CE=CE•CE=CE2=EG•EF,
    ∴OC2﹣OE2=EG•EF,
    ∴(OC+OE)(OC﹣OE)=EG•EF;
    (3)解:过O作ON⊥FG于N,延长EG交CD于M,如图:

    ∵∠OCD=∠ONM=90°,FG∥BC,
    ∴四边形MNOC是矩形,
    ∴MN=OC=BC=8,
    ∵ON⊥FG,
    ∴FN=GN,
    ∵EF=2EG,
    ∴FG=3EG,
    ∴NG=EG,
    ∴NE=EG,
    ∴EM=MN﹣NE=8﹣EG,
    由(2)知CE2=EG•EF=2EG2,
    ∴CM2=CE2﹣EM2=2EG2﹣(8﹣EG)2=ON2,
    而ON2=OE2﹣NE2=(OC2﹣CE2)﹣NE2,
    ∴2EG2﹣(8﹣EG)2=(82﹣2EG2)﹣(EG)2,
    解得EG=﹣1(负值已舍去),
    ∴FG=3EG=3﹣3.
    【点评】本题考查原的综合应用,涉及垂径定理及应用,三角形相似的判定与应用,勾股定理及应用等知识,解题的关键是作辅助线,构造相似三角形和直角三角形解决问题.
    28.(9分)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.
    (1)求b的值;
    (2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;
    ②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;
    (3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.


    【分析】(1)由二次函数的对称轴直接可求b的值;
    (2)①求出M(2﹣,0),N(2+,0),再求出MN=2,MN的中点坐标为(2,0),利用直角三角形斜边的中线等于斜边的一半,列出方程即可求解;
    ②求出抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),再求出y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0)当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),结合图像可得﹣1≤x<2﹣或2﹣<x≤1或3≤x<2+时,﹣4≤y<0;
    (3)通过画函数的图象,分类讨论求解即可.
    【解答】解:(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,
    ∴b=﹣4;
    (2)如图1:①令x2+bx+m=0,
    解得x=2﹣或x=2+,
    ∵M在N的左侧,
    ∴M(2﹣,0),N(2+,0),
    ∴MN=2,MN的中点坐标为(2,0),
    ∵△MNP为直角三角形,
    ∴=,
    解得m=0(舍)或m=﹣1;
    ②∵m=﹣1,
    ∴y=x2﹣4x﹣1(x≥0),
    令x2﹣4x﹣1=﹣4,
    解得x=1或x=3,
    ∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),
    ∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),
    当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,
    ∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),
    ∴﹣1≤x<2﹣或2﹣<x≤1或3≤x<2+时,﹣4≤y<0;
    (3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),
    如图2,当=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,
    解得m=﹣4,
    ∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,
    ∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,
    ∴m=﹣4时,当线段AB与图象C恰有两个公共点;
    如图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,
    此时图象C与线段AB有三个公共点,
    ∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;
    如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,
    此时图象C与线段AB有三个公共点,
    如图5,当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,
    解得m=3,
    此时图象C与线段AB有一个公共点,
    ∴1<m<3时,线段AB与图象C恰有两个公共点;
    综上所述:﹣4≤m<﹣1或1<m<3时,线段AB与图象C恰有两个公共点.






















    【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,图形翻折的性质,分类讨论,数形结合是解题的关键.
    相关试卷

    2020年黑龙江省大庆市中考数学试卷: 这是一份2020年黑龙江省大庆市中考数学试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市中考数学试卷: 这是一份2023年黑龙江省大庆市中考数学试卷,共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市中考数学试卷(含解析): 这是一份2023年黑龙江省大庆市中考数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map