|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省无锡新区六校联考中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省无锡新区六校联考中考适应性考试数学试题含解析01
    2021-2022学年江苏省无锡新区六校联考中考适应性考试数学试题含解析02
    2021-2022学年江苏省无锡新区六校联考中考适应性考试数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省无锡新区六校联考中考适应性考试数学试题含解析

    展开
    这是一份2021-2022学年江苏省无锡新区六校联考中考适应性考试数学试题含解析,共22页。试卷主要包含了某种圆形合金板材的成本y,计算3a2-a2的结果是,函数y=ax2+1与等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    2.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为(  )米.
    A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106
    3.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )

    A. B.
    C. D.
    4.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    5.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    6.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )

    A. B. C. D.
    7.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是(  )
    A.+2 B.﹣3 C.+4 D.﹣1
    8.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )

    A. B. C. D.
    9.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
    A. B. C. D.
    10.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是(  )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.

    12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
    13.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 .
    14.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______

    15.在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点.若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_____.
    16.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
    判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
    18.(8分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).

    请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是   人,并将以上两幅统计图补充完整;
    (2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有   人达标;
    (3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
    19.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.
    20.(8分)解方程.
    21.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
    操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
    ②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是 .猜想论证
    当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
    已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
    22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    23.(12分)车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.
    24.如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.

    图1 图2 图3
    (1)思路梳理
    将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为 ;
    (2)类比引申
    如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
    (3)联想拓展
    如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为 .



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形
    2、C
    【解析】
    423公里=423 000米=4.23×105米.
    故选C.
    3、D
    【解析】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.
    【详解】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.

    【点睛】
    本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
    4、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.
    5、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    6、C
    【解析】
    易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得= ,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.
    【详解】
    ∵AB、CD、EF都与BD垂直,
    ∴AB∥CD∥EF,
    ∴△DEF∽△DAB,△BEF∽△BCD,
    ∴= ,=,
    ∴+=+==1.
    ∵AB=1,CD=3,
    ∴+=1,
    ∴EF=.
    故选C.
    【点睛】
    本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.
    7、D
    【解析】
    试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,
    由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.
    故选D.
    8、B
    【解析】
    将A、B、C、D分别展开,能和原图相对应的即为正确答案:
    【详解】
    A、展开得到,不能和原图相对应,故本选项错误;
    B、展开得到,能和原图相对,故本选项正确;
    C、展开得到,不能和原图相对应,故本选项错误;
    D、展开得到,不能和原图相对应,故本选项错误.
    故选B.
    9、B
    【解析】
    试题分析:分a>0和a<0两种情况讨论:
    当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;
    当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.
    故选B.
    考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.
    10、C
    【解析】
    由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
    【详解】
    由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
    所以其主视图为:

    故选C.
    【点睛】
    考查了三视图的知识,主视图是从物体的正面看得到的视图.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.
    【详解】
    ∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,
    ∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,
    ∵点B是这条抛物线上的另一点,且AB∥x轴,
    ∴点B的横坐标是﹣3,
    ∴AB=|0﹣(﹣3)|=3,
    ∴正方形ABCD的周长为:3×4=1,
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.
    12、20000
    【解析】
    试题分析:1000÷=20000(条).
    考点:用样本估计总体.
    13、
    【解析】
    试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.
    解:列表得:
    (1,6)

    (2,6)

    (3,6)

    (4,6)

    (5,6)

    (6,6)

    (1,5)

    (2,5)

    (3,5)

    (4,5)

    (5,5)

    (6,5)

    (1,4)

    (2,4)

    (3,4)

    (4,4)

    (5,4)

    (6,4)

    (1,3)

    (2,3)

    (3,3)

    (4,3)

    (5,3)

    (6,3)

    (1,2)

    (2,2)

    (3,2)

    (4,2)

    (5,2)

    (6,2)

    (1,1)

    (2,1)

    (3,1)

    (4,1)

    (5,1)

    (6,1)

    ∴一共有36种等可能的结果,
    两个骰子的点数相同的有6种情况,
    ∴两个骰子的点数相同的概率为:=.
    故答案为.
    考点:列表法与树状图法.
    14、
    【解析】

    如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90∘,AC=BC=,
    ∴AB==2,
    ∴BD=2×=,
    C′D=×2=1,
    ∴BC′=BD−C′D=−1.
    故答案为:−1.
    点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.
    15、
    【解析】
    设PM=x,根据黄金分割的概念列出比例式,计算即可.
    【详解】
    设PM=x,则PN=1-x,
    由得,,
    化简得:x2+x-1=0,
    解得:x1=,x2=(负值舍去),
    所以PM的长为.
    【点睛】
    本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.
    16、(3,2).
    【解析】
    根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
    【详解】
    解:如图所示:∵A(0,a),
    ∴点A在y轴上,
    ∵C,D的坐标分别是(b,m),(c,m),
    ∴B,E点关于y轴对称,
    ∵B的坐标是:(﹣3,2),
    ∴点E的坐标是:(3,2).
    故答案为:(3,2).

    【点睛】
    此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.

    三、解答题(共8题,共72分)
    17、(1) DE与⊙O相切; 理由见解析;(2).
    【解析】
    (1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;
    (2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.
    【详解】
    解:(1)直线DE与⊙O相切.
    理由如下:连接OD.

    ∵OA=OD
    ∴∠ODA=∠A
    又∵∠BDE=∠A
    ∴∠ODA=∠BDE
    ∵AB是⊙O直径
    ∴∠ADB=90°
    即∠ODA+∠ODB=90°
    ∴∠BDE+∠ODB=90°
    ∴∠ODE=90°
    ∴OD⊥DE
    ∴DE与⊙O相切;
    (2)∵R=5,
    ∴AB=10,
    在Rt△ABC中
    ∵tanA=
    ∴BC=AB•tanA=10×,
    ∴AC=,
    ∵∠BDC=∠ABC=90°,∠BCD=∠ACB
    ∴△BCD∽△ACB

    ∴CD=.
    【点睛】
    本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.
    18、(1)120,补图见解析;(2)96;(3)960人.
    【解析】
    (1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;
    (2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;
    (3)求出达标占的百分比,乘以1200即可得到结果.
    【详解】
    (1)根据题意得:24÷20%=120(人),
    则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为×100%=30%,
    补全统计图,如图所示:

    (2)根据题意得:36+60=96(人),
    则达标的人数为96人;
    (3)根据题意得:×1200=960(人),
    则全校达标的学生有960人.
    故答案为(1)120;(2)96人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    19、现在平均每天清雪量为1立方米.
    【解析】
    分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.
    详解:设现在平均每天清雪量为x立方米,
    由题意,得
    解得 x=1.
    经检验x=1是原方程的解,并符合题意.
    答:现在平均每天清雪量为1立方米.
    点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.
    20、原分式方程无解.
    【解析】
    根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
    【详解】
    方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
    即:x2+2x﹣x2﹣x+2=3
    整理,得x=1
    检验:当x=1时,(x﹣1)(x+2)=0,
    ∴原方程无解.
    【点睛】
    本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
    21、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.
    【解析】
    (1)①由旋转可知:AC=DC,
    ∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.
    ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.
    ②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.

    由①可知:△ADC是等边三角形, DE∥AC,∴DN=CF,DN=EM.
    ∴CF=EM.
    ∵∠C=90°,∠B =30°
    ∴AB=1AC.
    又∵AD=AC
    ∴BD=AC.

    ∴.
    (1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
    ∵△DEC是由△ABC绕点C旋转得到,
    ∴BC=CE,AC=CD,
    ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
    ∴∠ACN=∠DCM,
    ∵在△ACN和△DCM中, ,
    ∴△ACN≌△DCM(AAS),
    ∴AN=DM,
    ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
    即S1=S1;
    (3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF1⊥BD,
    ∵∠ABC=20°,F1D∥BE,
    ∴∠F1F1D=∠ABC=20°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
    ∴∠F1DF1=∠ABC=20°,
    ∴△DF1F1是等边三角形,
    ∴DF1=DF1,过点D作DG⊥BC于G,
    ∵BD=CD,∠ABC=20°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×20°=30°,BG=BC=,
    ∴BD=3
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF1=320°-150°-20°=150°,
    ∴∠CDF1=∠CDF1,
    ∵在△CDF1和△CDF1中,

    ∴△CDF1≌△CDF1(SAS),
    ∴点F1也是所求的点,
    ∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×20°=30°,
    又∵BD=3,
    ∴BE=×3÷cos30°=3,
    ∴BF1=3,BF1=BF1+F1F1=3+3=2,
    故BF的长为3或2.

    22、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    23、(1);(2).
    【解析】
    试题分析:(1)根据概率公式即可得到结论;
    (2)画出树状图即可得到结论.
    试题解析:(1)选择 A通道通过的概率=,
    故答案为;
    (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.

    24、(1)△AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3)
    【解析】
    试题分析:(1)先根据旋转得:计算 即点共线,再根据SAS证明△AFE≌△AFG,得EF=FG,可得结论EF=DF+DG=DF+AE;
    (2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;
    (3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转至△ACG,证明△AED≌△AEG,得,先由勾股定理求的长,从而得结论.
    试题解析:(1)思路梳理:
    如图1,把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,即AB=AD,
    由旋转得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,
    ∴∠FDG=∠ADF+∠ADG=+=,
    即点F. D. G共线,
    ∵四边形ABCD为矩形,
    ∴∠BAD=,
    ∵∠EAF=,



    在△AFE和△AFG中,

    ∴△AFE≌△AFG(SAS),
    ∴EF=FG,
    ∴EF=DF+DG=DF+AE;
    故答案为:△AFE,EF=DF+AE;
    (2)类比引申:

    如图2,EF=DF−BE,理由是:
    把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,则G在DC上,
    由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,
    ∵∠BAD=,
    ∴∠BAE+∠BAG=,
    ∵∠EAF=,
    ∴∠FAG=−=,
    ∴∠EAF=∠FAG=,
    在△EAF和△GAF中,

    ∴△EAF≌△GAF(SAS),
    ∴EF=FG,
    ∴EF=DF−DG=DF−BE;
    (3)联想拓展:
    如图3,把△ABD绕点A逆时针旋转至△ACG,可使AB与AC重合,连接EG,

    由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,
    ∵∠BAC=,AB=AC,
    ∴∠B=∠ACB=,
    ∴∠ACG=∠B=,
    ∴∠BCG=∠ACB+∠ACG=+=,
    ∵EC=2,CG=BD=1,
    由勾股定理得:
    ∵∠BAD=∠CAG,∠BAC=,
    ∴∠DAG=,
    ∵∠BAD+∠EAC=,
    ∴∠CAG+∠EAC==∠EAG,
    ∴∠DAE=,
    ∴∠DAE=∠EAG=,
    ∵AE=AE,
    ∴△AED≌△AEG,


    相关试卷

    江苏省无锡锡山区四校联考2021-2022学年中考联考数学试题含解析: 这是一份江苏省无锡锡山区四校联考2021-2022学年中考联考数学试题含解析,共20页。试卷主要包含了下列运算正确的是,某班7名女生的体重,﹣的相反数是等内容,欢迎下载使用。

    江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析: 这是一份江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了如图,,,则的大小是,如图所示的几何体的俯视图是,若2<<3,则a的值可以是,点P等内容,欢迎下载使用。

    2022年江苏省泰州医药高新区六校联考中考适应性考试数学试题含解析: 这是一份2022年江苏省泰州医药高新区六校联考中考适应性考试数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map