2021-2022学年江苏省徐州市树人初级中学中考数学模试卷含解析
展开
这是一份2021-2022学年江苏省徐州市树人初级中学中考数学模试卷含解析,共22页。试卷主要包含了计算4×的结果等于,下列事件是确定事件的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )
A.众数是90 B.中位数是90 C.平均数是90 D.极差是15
2.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
3.关于2、6、1、10、6的这组数据,下列说法正确的是( )
A.这组数据的众数是6 B.这组数据的中位数是1
C.这组数据的平均数是6 D.这组数据的方差是10
4.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
5.计算4×(–9)的结果等于
A.32 B.–32 C.36 D.–36
6.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )
A. B. C. D.
7.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为( )
A. B.3cm C. D.9cm
8.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.13cm,12cm,20cm D.5cm,5cm,11cm
9.下列事件是确定事件的是( )
A.阴天一定会下雨
B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
10.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
11.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
12.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
14.如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为__________米.
15.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.
16.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
17.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.
18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)
①当x=1.7时,[x]+(x)+[x)=6;
②当x=﹣1.1时,[x]+(x)+[x)=﹣7;
③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)解不等式组:并写出它的所有整数解.
20.(6分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
21.(6分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
22.(8分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积
23.(8分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写做法)
24.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤
每件的售价/元
每件的成本/元
甲
50
乙
60
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
25.(10分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
26.(12分)解不等式组:并把解集在数轴上表示出来.
27.(12分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
收集数据:
30
60
81
50
40
110
130
146
90
100
60
81
120
140
70
81
10
20
100
81
整理数据:
课外阅读平均时间x(min)
0≤x<40
40≤x<80
80≤x<120
120≤x<160
等级
D
C
B
A
人数
3
a
8
b
分析数据:
平均数
中位数
众数
80
m
n
请根据以上提供的信息,解答下列问题:
(1)填空:a= ,b= ;m= ,n= ;
(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:
【详解】
解:∵90出现了5次,出现的次数最多,∴众数是90;
∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;
∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
极差是:95﹣80=1.
∴错误的是C.故选C.
2、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1
∴=.
故选A.
3、A
【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.
【详解】
数据由小到大排列为1,2,6,6,10,
它的平均数为(1+2+6+6+10)=5,
数据的中位数为6,众数为6,
数据的方差= [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.
故选A.
考点:方差;算术平均数;中位数;众数.
4、C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=1,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
③由抛物线的开口向下知a<1,
∵对称轴为1>x=﹣>1,
∴2a+b<1,
故本选项正确;
④对称轴为x=﹣>1,
∴a、b异号,即b>1,
∴abc<1,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
5、D
【解析】
根据有理数的乘法法则进行计算即可.
【详解】
故选:D.
【点睛】
考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
6、D
【解析】
试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
7、B
【解析】
解:∵∠CDB=30°,
∴∠COB=60°,
又∵OC=,CD⊥AB于点E,
∴,
解得CE=cm,CD=3cm.
故选B.
考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.
8、C
【解析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
A、3+4<8,不能组成三角形;
B、8+7=15,不能组成三角形;
C、13+12>20,能够组成三角形;
D、5+5<11,不能组成三角形.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.
9、D
【解析】
试题分析:找到一定发生或一定不发生的事件即可.
A、阴天一定会下雨,是随机事件;
B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
故选D.
考点:随机事件.
10、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
11、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
12、A
【解析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
【详解】
解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:
则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
故选A.
【点睛】
本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.
【详解】
由题意得,(x+2)2﹣(x+2)(x﹣2)=6,
整理得,3x+3=6,
解得,x=2,
故答案为2.
【点睛】
本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.
14、(14+2)米
【解析】
过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
【详解】
如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
∵CD=8,CD与地面成30°角,
∴DE=CD=×8=4,
根据勾股定理得:CE===4.
∵1m杆的影长为2m,
∴=,
∴EF=2DE=2×4=8,
∴BF=BC+CE+EF=20+4+8=(28+4).
∵=,
∴AB=(28+4)=14+2.
故答案为(14+2).
【点睛】
本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.
15、117°
【解析】
连接AD,BD,利用圆周角定理解答即可.
【详解】
连接AD,BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠AED=27°,
∴∠DBA=27°,
∴∠DAB=90°-27°=63°,
∴∠DCB=180°-63°=117°,
故答案为117°
【点睛】
此题考查圆周角定理,关键是根据圆周角定理解答.
16、1.
【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
【详解】
如图所示:
∵坡度i=1:0.75,
∴AC:BC=1:0.75=4:3,
∴设AC=4x,则BC=3x,
∴AB==5x,
∵AB=20m,
∴5x=20,
解得:x=4,
故3x=1,
故这个物体在水平方向上前进了1m.
故答案为:1.
【点睛】
此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
17、1
【解析】
过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
【详解】
如下图,过点C作CH∥AB交DE的延长线于点H,
则,
∵DF∥CH,
∴,
∴,
∴,
同理,
∴,
∴,解得t=1,t=(舍去),
故答案为:1.
【点睛】
本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.
18、②③
【解析】
试题解析:①当x=1.7时,
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;
②当x=﹣1.1时,
[x]+(x)+[x)
=[﹣1.1]+(﹣1.1)+[﹣1.1)
=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;
③当1<x<1.5时,
4[x]+3(x)+[x)
=4×1+3×1+1
=4+6+1
=11,故③正确;
④∵﹣1<x<1时,
∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
当x=0时,y=[x]+(x)+x=0+0+0=0,
当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,
当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,
∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,
故答案为②③.
考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、原不等式组的解集为,它的所有整数解为0,1.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.
【详解】
解:,
解不等式①,得,
解不等式②,得x<2,
∴原不等式组的解集为,
它的所有整数解为0,1.
【点睛】
本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
20、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
21、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
【解析】
(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
【详解】
解:∵B(2,﹣4)在反比例函数y=的图象上,
∴m=2×(﹣4)=﹣8,
∴反比例函数解析式为:y=﹣,
把A(﹣4,n)代入y=﹣,
得﹣4n=﹣8,解得n=2,
则A点坐标为(﹣4,2).
把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
得,解得,
∴一次函数的解析式为y=﹣x﹣2;
(2)∵y=﹣x﹣2,
∴当﹣x﹣2=0时,x=﹣2,
∴点C的坐标为:(﹣2,0),
△AOB的面积=△AOC的面积+△COB的面积
=×2×2+×2×4
=6;
(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
【点睛】
本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
22、(1),N(3,6);(2)y=-x+2,S△OMN=3.
【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
【详解】
解:(1)∵点M是AB边的中点,∴M(6,3).
∵反比例函数y=经过点M,∴3=.∴k=1.
∴反比例函数的解析式为y=.
当y=6时,x=3,∴N(3,6).
(2)由题意,知M(6,2),N(2,6).
设直线MN的解析式为y=ax+b,则
,
解得,
∴直线MN的解析式为y=-x+2.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
【点睛】
本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
23、见解析
【解析】
三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.
【详解】
作∠CDP=∠BCD,PD与AC的交点即P.
【点睛】
本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.
24、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
相关试卷
这是一份2023年江苏省徐州市鼓楼区树人初级中学中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江苏省徐州市鼓楼区树人初级中学中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年江苏省徐州市鼓楼区树人初级中学中考数学三模试卷(含答案),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。