2021-2022学年江苏省宿迁市钟吾国际校中考数学四模试卷含解析
展开这是一份2021-2022学年江苏省宿迁市钟吾国际校中考数学四模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列分式是最简分式的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是
A. B. C. D.
2.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是( )
A.b2>4ac B.ax2+bx+c≤6
C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=0
3.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )
A. B. C. D.
4.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为( )
A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
5.下列分式是最简分式的是( )
A. B. C. D.
6.在,0,-1,这四个数中,最小的数是( )
A. B.0 C. D.-1
7.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )
A.1 B.2 C.3 D.4
8.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为( )
A.3 B. C. D.
9.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )
A.20° B.40° C.60° D.80°
10.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为( )
A.42° B.66° C.69° D.77°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.
12.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
13.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cos∠AMC ,则 tan∠B 的值为__________.
14.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1. 则cos∠BEC=________.
15.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)
16.分式方程=1的解为_________.
三、解答题(共8题,共72分)
17.(8分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
18.(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
A
B
C
笔试
85
95
90
口试
80
85
(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
19.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.
求证:四边形DECF是菱形.
20.(8分)如图,在平面直角坐标系xOy中,直线与函数的图象的两个交点分别为A(1,5),B.
(1)求,的值;
(2)过点P(n,0)作x轴的垂线,与直线和函数的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.
21.(8分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
(1)求证:点F是AC的中点;
(2)若∠A=30°,AF=,求图中阴影部分的面积.
22.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.
23.(12分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
(1)求证:此方程有两个不相等的实数根;
(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
24.如图,,,,,交于点.求的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
2、C
【解析】
观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m
3、B
【解析】
分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.
详解:由俯视图及其小正方体的分布情况知,
该几何体的主视图为:
该几何体的左视图为:
故选:B.
点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
31600000000=3.16×1.故选:C.
【点睛】
本题考查科学记数法,解题的关键是掌握科学记数法的表示.
5、C
【解析】
解:A.,故本选项错误;
B.,故本选项错误;
C.,不能约分,故本选项正确;
D.,故本选项错误.
故选C.
点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
6、D
【解析】
试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.
考点:正负数的大小比较.
7、C
【解析】
分析:
过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
综上所述,符合要求的半径为2的圆共有3个.
故选C.
点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
8、C
【解析】
连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,根据全等三角形的性质可得: 即 根据等腰三角形的性质可得: 设 则
即可求出的值.
【详解】
如图:
连接
D为弧AB的中点,根据弧,弦的关系可知,AD=BD,
根据圆周角定理可得:
在BC上截取,连接DF,
则≌,
即
根据等腰三角形的性质可得:
设 则
故选C.
【点睛】
考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.
9、C
【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
【详解】
∵,,
∴,
∵,
∴,
∵,
∴,
故选C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
10、C
【解析】
在△ABC中,∠ACB=90°,∠A=24°,
∴∠B=90°-∠A=66°.
由折叠的性质可得:∠BCD=∠ACB=45°,
∴∠BDC=180°-∠BCD-∠B=69°.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、50
【解析】
由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得
=,又由圆周角定理,可得∠AOD=50°.
【详解】
∵CD是⊙O的直径,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案为50
【点睛】
本题考查角度的求解,解题的关键是利用垂径定理.
12、
【解析】
当k−1=0,即k=1时,原方程为−4x−5=0,
解得:x=−,
∴k=1符合题意;
当k−1≠0,即k≠1时,有,
解得:k⩾且k≠1.
综上可得:k的取值范围为k⩾.
故答案为k⩾.
13、
【解析】
根据cos∠AMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解.
【详解】
解:∵cos∠AMC ,
,
设, ,
∴在Rt△ACM中,
∵AM 是 BC 边上的中线,
∴BM=MC=3x,
∴BC=6x,
∴在Rt△ABC中,,
故答案为:.
【点睛】
本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.
14、
【解析】
分析:连接BC,则∠BCE=90°,由余弦的定义求解.
详解:连接BC,根据圆周角定理得,∠BCE=90°,
所以cos∠BEC=.
故答案为.
点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.
15、π
【解析】
∵∠C=30°,
∴∠AOB=60°,
∴.即的长为.
16、x=1
【解析】
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
详解:两边都乘以x+4,得:3x=x+4,
解得:x=1,
检验:x=1时,x+4=6≠0,
所以分式方程的解为x=1,
故答案为:x=1.
点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
三、解答题(共8题,共72分)
17、(1)答案见解析;(2)AB=1BE;(1)1.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;
(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为1.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
18、(1)90;(2)144度;(3)105,120,75;(4)B
【解析】
(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;
(2)用360°乘以B对应的百分比可得答案;
(3)用总人数乘以A、B、C三人对应的百分比可得答案;
(4)根据加权平均数的定义计算可得.
【详解】
解:(1)由条形图知,A演讲得分为90分,
补全图形如下:
故答案为90;
(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,
故答案为144;
(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,
故答案为105、120、75;
(4)A的最终得分为=92.5(分),
B的最终得分为=98(分),
C的最终得分为=84(分),
∴B最终当选,
故答案为B.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
19、见解析
【解析】
证明:∵D、E是AB、AC的中点
∴DE=BC,EC=AC
∵D、F是AB、BC的中点
∴DF=AC,FC=BC
∴DE=FC=BC,EC=DF=AC
∵AC=BC
∴DE=EC=FC=DF
∴四边形DECF是菱形
20、(1),;(2)0<n<1或者n>1.
【解析】
(1)利用待定系数法即可解决问题;
(2)利用图象法即可解决问题;
【详解】
解:(1)∵A(1,1)在直线上,
∴,
∵A(1,1)在的图象上,
∴.
(2)观察图象可知,满足条件的n的值为:0<n<1或者n>1.
【点睛】
此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.
21、(1)见解析;(2)
【解析】
(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;
(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.
【详解】
(1)证明:连接OD、CD,如图,
∵BC为直径,
∴∠BDC=90°,
∵∠ACB=90°,
∴AC为⊙O的切线,
∵EF为⊙O的切线,
∴FD=FC,
∴∠1=∠2,
∵∠1+∠A=90°,∠2+∠3=90°,
∴∠3=∠A,
∴FD=FA,
∴FC=FA,
∴点F是AC中点;
(2)解:在Rt△ACB中,AC=2AF=2,
而∠A=30°,
∴∠CBA=60°,BC=AC=2,
∵OB=OD,
∴△OBD为等边三角形,
∴∠BOD=60°,
∵EF为切线,
∴OD⊥EF,
在Rt△ODE中,DE=OD=,
∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
22、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
23、 (1)见解析;(2)m=2
【解析】
(1)根据一元二次方程根的判别式进行分析解答即可;
(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
【详解】
(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
∴方程有两个不相等的实数根;
(2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
解得:x=2m+2和x=2m-2,
∵2m+2>2m﹣2,x1>x2,
∴x1=2m+2,x2=2m﹣2,
又∵x1=2x2,
∴2m+2=2(2m﹣2)解得:m=2.
【点睛】
(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
24、
【解析】
试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.
解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.
在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.
在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.
相关试卷
这是一份2024年江苏省宿迁市宿城区钟吾初级中学中考二模考试数学试题(学生版+教师版),文件包含2024年江苏省宿迁市宿城区钟吾初级中学中考二模考试数学试题教师版docx、2024年江苏省宿迁市宿城区钟吾初级中学中考二模考试数学试题学生版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份2024年江苏省宿迁市宿城区钟吾初级中学中考二模考试数学试题,共8页。
这是一份江苏省镇江外国语校2021-2022学年中考数学四模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,比1小2的数是,4的平方根是,在平面直角坐标系中,已知点A等内容,欢迎下载使用。