|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省徐州市撷秀中学中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省徐州市撷秀中学中考数学最后冲刺浓缩精华卷含解析01
    2021-2022学年江苏省徐州市撷秀中学中考数学最后冲刺浓缩精华卷含解析02
    2021-2022学年江苏省徐州市撷秀中学中考数学最后冲刺浓缩精华卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省徐州市撷秀中学中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份2021-2022学年江苏省徐州市撷秀中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了若正比例函数y=mx,若,则的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )

    A.10 B.9 C.8 D.6
    2.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(   )
    A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
    3.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为(  )

    A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
    4.下列算式中,结果等于a5的是(  )
    A.a2+a3 B.a2•a3 C.a5÷a D.(a2)3
    5.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
    A. B. C. D.
    6.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于(  )
    A.2 B.﹣2 C.4 D.﹣4
    7.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的(  )

    A.平均数 B.中位数 C.众数 D.方差
    8.若,则的值为( )
    A.12 B.2 C.3 D.0
    9.在下列交通标志中,是中心对称图形的是(  )
    A. B.
    C. D.
    10.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于( )

    A.5 B. C. D.7
    二、填空题(共7小题,每小题3分,满分21分)
    11.抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为_____.
    12.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.

    13.在反比例函数图象的每一支上,y随x的增大而______用“增大”或“减小”填空.
    14.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .

    15.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:





    平均数(cm)
    561
    560
    561
    560
    方差s2(cm2)
    3.5
    3.5
    15.5
    16.5
    根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.
    16.函数y=的自变量x的取值范围是_____.
    17.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.

    19.(5分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
    (1)求证:直线CD是⊙O的切线;
    (2)若DE=2BC,AD=5,求OC的值.

    20.(8分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).
    (1)求抛物线的解析式及其顶点D的坐标;
    (2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;
    (3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.

    21.(10分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
    每人销售件数
    1800
    510
    250
    210
    150
    120
    人数
    1
    1
    3
    5
    3
    2
    (1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.
    22.(10分)如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.

    23.(12分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
    (1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
    (2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?

    24.(14分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
    解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.

    设OA=a,BF=b,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a, a).
    ∵点A在反比例函数y=的图象上,
    ∴a×a=a2=12,
    解得:a=5,或a=﹣5(舍去).
    ∴AM=8,OM=1.
    ∵四边形OACB是菱形,
    ∴OA=OB=10,BC∥OA,
    ∴∠FBN=∠AOB.
    在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
    ∴FN=BF•sin∠FBN=b,BN==b,
    ∴点F的坐标为(10+b,b).
    ∵点F在反比例函数y=的图象上,
    ∴(10+b)×b=12,
    S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
    故选A.
    “点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    2、C
    【解析】
    【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
    【详解】设每个小箱子装洗衣粉x千克,由题意得:
    4x+2=36,
    解得:x=8.5,
    即每个小箱子装洗衣粉8.5千克,
    故选C.
    【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
    3、A
    【解析】
    作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
    【详解】
    解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:

    则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
    ∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
    ∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
    在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
    故选A.
    【点睛】
    本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
    4、B
    【解析】
    试题解析:A、a2与a3不能合并,所以A选项错误;
    B、原式=a5,所以B选项正确;
    C、原式=a4,所以C选项错误;
    D、原式=a6,所以D选项错误.
    故选B.
    5、B
    【解析】
    试题解析:列表如下:

    ∴共有20种等可能的结果,P(一男一女)=.
    故选B.
    6、B
    【解析】
    利用待定系数法求出m,再结合函数的性质即可解决问题.
    【详解】
    解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
    ∴m2=4,
    ∴m=±2,
    ∵y的值随x值的增大而减小,
    ∴m<0,
    ∴m=﹣2,
    故选:B.
    【点睛】
    本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    7、B
    【解析】
    根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
    【详解】
    因为需要保证不少于50%的骑行是免费的,
    所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
    故选B.
    【点睛】
    本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
    8、A
    【解析】
    先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
    【详解】
    ∵,
    ∴,
    ∴.
    故选:A.
    【点睛】
    本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
    9、C
    【解析】
    解:A图形不是中心对称图形;
    B不是中心对称图形;
    C是中心对称图形,也是轴对称图形;
    D是轴对称图形;不是中心对称图形
    故选C
    10、A
    【解析】
    连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到 ,即2R= = .
    【详解】
    解:如图,

    连接AO并延长到E,连接BE.设AE=2R,则
    ∠ABE=90°,∠AEB=∠ACB;
    ∵AD⊥BC于D点,AC=5,DC=3,
    ∴∠ADC=90°,
    ∴AD=,

    在Rt△ABE与Rt△ADC中,
    ∠ABE=∠ADC=90°,∠AEB=∠ACB,
    ∴Rt△ABE∽Rt△ADC,
    ∴,
    即2R= = ;
    ∴⊙O的直径等于.
    故答案选:A.
    【点睛】
    本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.

    二、填空题(共7小题,每小题3分,满分21分)
    11、y=2(x+2)2+1
    【解析】
    试题解析:∵二次函数解析式为y=2x2+1,
    ∴顶点坐标(0,1)
    向左平移2个单位得到的点是(-2,1),
    可设新函数的解析式为y=2(x-h)2+k,
    代入顶点坐标得y=2(x+2)2+1,
    故答案为y=2(x+2)2+1.
    点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.
    12、(a+b)2﹣(a﹣b)2=4ab
    【解析】
    根据长方形面积公式列①式,根据面积差列②式,得出结论.
    【详解】
    S阴影=4S长方形=4ab①,
    S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,
    由①②得:(a+b)2﹣(a﹣b)2=4ab.
    故答案为(a+b)2﹣(a﹣b)2=4ab.
    【点睛】
    本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.
    13、减小
    【解析】
    根据反比例函数的性质,依据比例系数k的符号即可确定.
    【详解】
    ∵k=2>0,
    ∴y随x的增大而减小.
    故答案是:减小.
    【点睛】
    本题考查了反比例函数的性质,反比例函数y=(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
    14、.
    【解析】
    试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.

    考点:扇形的面积计算.
    15、甲
    【解析】
    首先比较平均数,平均数相同时选择方差较小的运动员参加.
    【详解】
    ∵ ,
    ∴从甲和丙中选择一人参加比赛,
    ∵ ,
    ∴选择甲参赛,
    故答案为甲.
    【点睛】
    此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    16、x≥﹣且x≠1
    【解析】
    分析:根据被开方数大于等于0,分母不等于0列式求解即可.
    详解:根据题意得2x+1≥0,x-1≠0,
    解得x≥-且x≠1.
    故答案为x≥-且x≠1.
    点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
    17、1:1
    【解析】
    根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
    【详解】
    连接HF,

    ∵四边形ABCD为矩形,
    ∴AD=BC,AD∥BC,∠D=90°
    ∵H、F分别为AD、BC边的中点,
    ∴DH=CF,DH∥CF,
    ∵∠D=90°,
    ∴四边形HFCD是矩形,
    ∴△HFG的面积是CD×DH=S矩形HFCD,
    即S△HFG=S△DHG+S△CFG,
    同理S△HEF=S△BEF+S△AEH,
    ∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,
    故答案为1:1.
    【点睛】
    本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.
    【解析】
    (1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.
    (2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.
    【详解】
    解:(1)证明:∵在△ADC和△ABC中,
    ∴△ADC≌△ABC(SSS).∴∠1=∠2.
    (2)四边形BCDE是菱形,理由如下:
    如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.
    ∵OE=OC,∴四边形DEBC是平行四边形.
    ∵AC⊥BD,∴四边形DEBC是菱形.

    【点睛】
    考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.
    19、(1)证明见解析;(2).
    【解析】
    试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
    (2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
    试题解析:(1)连结DO.

    ∵AD∥OC,
    ∴∠DAO=∠COB,∠ADO=∠COD.
    又∵OA=OD,
    ∴∠DAO=∠ADO,
    ∴∠COD=∠COB. 3分
    又∵CO=CO, OD=OB
    ∴△COD≌△COB(SAS) 4分
    ∴∠CDO=∠CBO=90°.
    又∵点D在⊙O上,
    ∴CD是⊙O的切线.
    (2)∵△COD≌△COB.
    ∴CD=CB.
    ∵DE=2BC,
    ∴ED=2CD.
    ∵AD∥OC,
    ∴△EDA∽△ECO.
    ∴,
    ∴.
    考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.
    20、 (1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.
    【解析】
    分析:
    (1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;
    (2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;
    (3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.
    详解:
    (1)∵抛物线y=ax2+2x+1经过点B(4,0),
    ∴16a+1+1=0,
    ∴a=﹣1,
    ∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,
    ∴D(1,9);
    (2)∵当x=0时,y=1,
    ∴C(0,1).
    设直线CD的解析式为y=kx+b.
    将点C、D的坐标代入得:,解得:k=1,b=1,
    ∴直线CD的解析式为y=x+1.
    当y=0时,x+1=0,解得:x=﹣1,
    ∴直线CD与x轴的交点坐标为(﹣1,0).
    ∵当P在直线CD上时,|PC﹣PD|取得最大值,
    ∴p=﹣1;
    (3)存在,
    理由:如图,由(2)知,C(0,1),
    ∵B(4,0),
    ∴直线BC的解析式为y=﹣2x+1,
    过点Q作QE∥y轴交BC于E,
    设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),
    ∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,
    ∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,
    ∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).

    点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.
    21、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件
    【解析】
    试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;
    (2)把月销售额320件与大部分员工的工资比较即可判断.
    (1)平均数件,
    ∵最中间的数据为210,
    ∴这组数据的中位数为210件,
    ∵210是这组数据中出现次数最多的数据,
    ∴众数为210件;
    (2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.
    考点:本题考查的是平均数、众数和中位数
    点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    22、见解析
    【解析】
    试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.
    试题解析:∵△ABC是等边三角形,
    ∴AC=BC,∠B=∠ACB=60°,
    ∵线段CD绕点C顺时针旋转60°得到CE,
    ∴CD=CE,∠DCE=60°,
    ∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,
    ∴∠BCD=∠ACE,
    在△BCD与△ACE中,
    ,
    ∴△BCD≌△ACE,
    ∴∠EAC=∠B=60°,
    ∴∠EAC=∠ACB,
    ∴AE∥BC.
    23、(1)10,1;(2).
    【解析】
    (1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
    (2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
    【详解】
    解:(1)图象过点,

    解得


    的顶点坐标为.

    ∴当时,最大=1.
    答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
    (2)∵函数图象的对称轴为直线,
    可知点关于对称轴的对称点是,
    又∵函数图象开口向下,
    ∴当时,.
    答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
    【点睛】
    本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.
    24、(1)(2)
    【解析】
    试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
    (2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
    试题解析:解:(1).
    (2)用表格列出所有可能的结果:
    第二次
    第一次

    红球1

    红球2

    白球

    黑球

    红球1



    (红球1,红球2)

    (红球1,白球)

    (红球1,黑球)

    红球2

    (红球2,红球1)



    (红球2,白球)

    (红球2,黑球)

    白球

    (白球,红球1)

    (白球,红球2)



    (白球,黑球)

    黑球

    (黑球,红球1)

    (黑球,红球2)

    (黑球,白球)



    由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
    ∴P(两次都摸到红球)==.
    考点:概率统计

    相关试卷

    江苏省淮安市涟水实验中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份江苏省淮安市涟水实验中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列命题中,真命题是等内容,欢迎下载使用。

    2021-2022学年江苏省无锡市八士中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年江苏省无锡市八士中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列计算正确的是,下列函数中,二次函数是等内容,欢迎下载使用。

    2021-2022学年江苏省如东县中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年江苏省如东县中考数学最后冲刺浓缩精华卷含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map