|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省扬州市田家炳中学中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省扬州市田家炳中学中考考前最后一卷数学试卷含解析01
    2021-2022学年江苏省扬州市田家炳中学中考考前最后一卷数学试卷含解析02
    2021-2022学年江苏省扬州市田家炳中学中考考前最后一卷数学试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省扬州市田家炳中学中考考前最后一卷数学试卷含解析

    展开
    这是一份2021-2022学年江苏省扬州市田家炳中学中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的主视图是,的值是,下列计算正确的是等内容,欢迎下载使用。

    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
    A.3cm,4cm,8cm B.8cm,7cm,15cm
    C.13cm,12cm,20cm D.5cm,5cm,11cm
    2.下面说法正确的个数有( )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    3.计算(—2)2-3的值是( )
    A、1 B、2 C、—1 D、—2
    4.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )
    A.2B.3C.4D.5
    5.如图所示的几何体的主视图是( )
    A.B.C.D.
    6.的值是
    A.±3B.3C.9D.81
    7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是( )
    A.①②B.②③C.①③D.①②③
    8.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    9.下列计算正确的是( )
    A.x4•x4=x16 B.(a+b)2=a2+b2
    C.=±4 D.(a6)2÷(a4)3=1
    10.若正六边形的边长为6,则其外接圆半径为( )
    A.3B.3C.3D.6
    11.下列几何体中,其三视图都是全等图形的是( )
    A.圆柱B.圆锥C.三棱锥D.球
    12.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃B.4℃C.8℃D.-8℃
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
    14.函数y=中自变量x的取值范围是_____.
    15.分解因式:=___________.
    16.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.
    17.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.
    18.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cs∠AMC ,则 tan∠B 的值为__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.
    (1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
    (2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.
    20.(6分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
    (1)二月份冰箱每台售价为多少元?
    (2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
    (3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
    21.(6分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cs37°= ,tan37°= )
    (1)求把手端点A到BD的距离;
    (2)求CH的长.
    22.(8分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
    23.(8分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
    (1)试判断∠AED与∠C的数量关系,并说明理由;
    (2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为 .
    24.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.
    25.(10分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
    (1)求证:△PFA∽△ABE;
    (2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
    (3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
    26.(12分)已知BD平分∠ABF,且交AE于点D.
    (1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
    (2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
    27.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
    任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,
    设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
    【详解】
    A、3+4<8,不能组成三角形;
    B、8+7=15,不能组成三角形;
    C、13+12>20,能够组成三角形;
    D、5+5<11,不能组成三角形.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.
    2、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    3、A
    【解析】本题考查的是有理数的混合运算
    根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。
    解答本题的关键是掌握好有理数的加法、乘方法则。
    4、B
    【解析】
    ∵四边形ABCD是正方形,
    ∴∠A=∠B=90°,
    ∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,
    ∵∠GEF=90°,
    ∴∠GEA+∠FEB=90°,
    ∴∠AGE=∠FEB,∠AEG=∠EFB,
    ∴△AEG∽△BFE,
    ∴,
    又∵AE=BE,
    ∴AE2=AG•BF=2,
    ∴AE=(舍负),
    ∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,
    ∴GF的长为3,
    故选B.
    【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.
    5、A
    【解析】
    找到从正面看所得到的图形即可.
    【详解】
    解:从正面可看到从左往右2列一个长方形和一个小正方形,
    故选A.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    6、C
    【解析】
    试题解析:∵
    ∴的值是3
    故选C.
    7、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    8、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、D
    【解析】
    试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
    考点:1、幂的运算;2、完全平方公式;3、算术平方根.
    10、D
    【解析】
    连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
    【详解】
    如图为正六边形的外接圆,ABCDEF是正六边形,
    ∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
    所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
    故选D.
    【点睛】
    本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
    11、D
    【解析】
    分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
    详解:圆柱,圆锥,三棱锥,球中,
    三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
    故选D.
    点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
    12、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、6y2-5y+2=0
    【解析】
    根据y=,将方程变形即可.
    【详解】
    根据题意得:3y+,
    得到6y2-5y+2=0
    故答案为6y2-5y+2=0
    【点睛】
    此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
    14、x≥﹣且x≠1.
    【解析】
    根据分式有意义的条件、二次根式有意义的条件列式计算.
    【详解】
    由题意得,2x+3≥0,x-1≠0,
    解得,x≥-且x≠1,
    故答案为:x≥-且x≠1.
    【点睛】
    本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
    15、
    【解析】
    直接利用完全平方公式分解因式得出答案.
    【详解】
    解:=,
    故答案为.
    【点睛】
    此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.
    16、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,
    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
    17、 .
    【解析】
    延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
    【详解】
    解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.
    ∵AC=6,CF=1,
    ∴AF=AC-CF=4,
    ∵∠A=60°,∠AMF=90°,
    ∴∠AFM=30°,
    ∴AM=AF=1,
    ∴FM==1 ,
    ∵FP=FC=1,
    ∴PM=MF-PF=1-1,
    ∴点P到边AB距离的最小值是1-1.
    故答案为: 1-1.
    【点睛】
    本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
    18、
    【解析】
    根据cs∠AMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解.
    【详解】
    解:∵cs∠AMC ,

    设, ,
    ∴在Rt△ACM中,
    ∵AM 是 BC 边上的中线,
    ∴BM=MC=3x,
    ∴BC=6x,
    ∴在Rt△ABC中,,
    故答案为:.
    【点睛】
    本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)30°;(2)20°;
    【解析】
    (1)利用圆切线的性质求解;
    (2) 连接OQ,利用圆的切线性质及角之间的关系求解。
    【详解】
    (1)如图①中,连接OQ.
    ∵EQ是切线,
    ∴OQ⊥EQ,
    ∴∠OQE=90°,
    ∵OA⊥OB,
    ∴∠AOB=90°,
    ∴∠AQB=∠AOB=45°,
    ∵OB=OQ,
    ∴∠OBQ=∠OQB=15°,
    ∴∠AQE=90°﹣15°﹣45°=30°.
    (2)如图②中,连接OQ.
    ∵OB=OQ,
    ∴∠B=∠OQB=65°,
    ∴∠BOQ=50°,
    ∵∠AOB=90°,
    ∴∠AOQ=40°,
    ∵OQ=OA,
    ∴∠OQA=∠OAQ=70°,
    ∵EQ是切线,
    ∴∠OQE=90°,
    ∴∠AQE=90°﹣70°=20°.
    【点睛】
    此题主要考查圆的切线的性质及圆中集合问题的综合运等.
    20、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.
    【解析】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.
    【详解】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,
    根据题意,得: =,
    解得:x=4000,
    经检验,x=4000是原方程的根.
    答:二月份冰箱每台售价为4000元.
    (2)根据题意,得:3500y+4000(20﹣y)≤76000,
    解得:y≥3,
    ∵y≤2且y为整数,
    ∴y=3,9,10,11,2.
    ∴洗衣机的台数为:2,11,10,9,3.
    ∴有五种购货方案.
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,
    根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,
    ∵(2)中的各方案利润相同,
    ∴1﹣a=0,
    ∴a=1.
    答:a的值为1.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.
    21、(1)12;(2)CH的长度是10cm.
    【解析】
    (1)、过点A作于点N,过点M作于点Q,根据Rt△AMQ中α的三角函数得出得出AN的长度;
    (2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.
    【详解】
    解:(1)、过点A作于点N,过点M作于点Q.
    在中,.
    ∴,
    ∴,
    ∴.
    (2)、根据题意:∥.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    答:的长度是10cm .
    点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
    22、(1)75°(2)见解析
    【解析】
    (1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
    (2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
    【详解】
    解:(1)∵△ABC是等边三角形
    ∴∠ACB=60°,BC=AC
    ∵等边△ABC绕点C顺时针旋转90°得到△EFC
    ∴CF=BC,∠BCF=90°,AC=CE
    ∴CF=AC
    ∵∠BCF=90°,∠ACB=60°
    ∴∠ACF=∠BCF﹣∠ACB=30°
    ∴∠CFA=(180°﹣∠ACF)=75°
    (2)∵△ABC和△EFC是等边三角形
    ∴∠ACB=60°,∠E=60°
    ∵CD平分∠ACE
    ∴∠ACD=∠ECD
    ∵∠ACD=∠ECD,CD=CD,CA=CE,
    ∴△ECD≌△ACD(SAS)
    ∴∠DAC=∠E=60°
    ∴∠DAC=∠ACB
    ∴AD∥BC
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
    23、(1)∠AED=∠C,理由见解析;(2)
    【解析】
    (1)根据切线的性质和圆周角定理解答即可;
    (2)根据勾股定理和三角函数进行解答即可.
    【详解】
    (1)∠AED=∠C,证明如下:
    连接BD,
    可得∠ADB=90°,
    ∴∠C+∠DBC=90°,
    ∵CB是⊙O的切线,
    ∴∠CBA=90°,
    ∴∠ABD+∠DBC=90°,
    ∴∠ABD=∠C,
    ∵∠AEB=∠ABD,
    ∴∠AED=∠C,
    (2)连接BE,
    ∴∠AEB=90°,
    ∵∠C=60°,
    ∴∠CAB=30°,
    在Rt△DAB中,AD=3,∠ADB=90°,
    ∴cs∠DAB=,
    解得:AB=2,
    ∵E是半圆AB的中点,
    ∴AE=BE,
    ∵∠AEB=90°,
    ∴∠BAE=45°,
    在Rt△AEB中,AB=2,∠ADB=90°,
    ∴cs∠EAB=,
    解得:AE=.
    故答案为
    【点睛】
    此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
    24、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;
    (2)﹣3<x<0或x>2;
    (3)1.
    【解析】
    (1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式
    (2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围
    (3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积
    【详解】
    解:(1)∵点A(2,3)在y=的图象上,∴m=6,
    ∴反比例函数的解析式为:y=,
    ∴n==﹣2,
    ∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,
    ∴,
    解得:,
    ∴一次函数的解析式为:y=x+1;
    (2)由图象可知﹣3<x<0或x>2;
    (3)以BC为底,则BC边上的高为3+2=1,
    ∴S△ABC=×2×1=1.
    25、(1)证明见解析;(2)3或.(3)或0<
    【解析】
    (1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
    (2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
    (3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴AD∥BC.

    ∴∠PAF=∠AEB.
    又∵PF⊥AE,

    ∴△PFA∽△ABE.
    (2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
    则有PE∥AB
    ∴四边形ABEP为矩形,
    ∴PA=EB=3,即x=3.
    情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
    ∵∠PAF=∠AEB,
    ∴∠PEF=∠PAF.
    ∴PE=PA.
    ∵PF⊥AE,
    ∴点F为AE的中点,




    ∴满足条件的x的值为3或
    (3) 或
    【点睛】
    两组角对应相等,两三角形相似.
    26、 (1)见解析:(2)见解析.
    【解析】
    试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
    (2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
    试题解析:(1)如图所示:
    (2)如图:
    在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
    考点:1.菱形的判定;2.作图—基本作图.
    27、(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.
    【解析】
    (1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.
    【详解】
    (1)设p与x之间的函数关系式为p=kx+b,则有
    ,解得,,
    即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),
    当1≤x<10时,
    W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,
    当10≤x≤15时,
    W=[20﹣(0.5x+7)]×40=﹣20x+520,
    即W=;
    (2)当1≤x<10时,
    W=﹣x2+16x+260=﹣(x﹣8)2+324,
    ∴当x=8时,W取得最大值,此时W=324,
    当10≤x≤15时,
    W=﹣20x+520,
    ∴当x=10时,W取得最大值,此时W=320,
    ∵324>320,
    ∴李师傅第8天创造的利润最大,最大利润是324元;
    (3)当1≤x<10时,
    令﹣x2+16x+260=299,得x1=3,x2=13,
    当W>299时,3<x<13,
    ∵1≤x<10,
    ∴3<x<10,
    当10≤x≤15时,
    令W=﹣20x+520>299,得x<11.05,
    ∴10≤x≤11,
    由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),
    即李师傅共可获得160元奖金.
    【点睛】
    本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    天数(x)
    1
    3
    6
    10
    每件成本p(元)
    7.5
    8.5
    10
    12
    相关试卷

    江苏省扬州市仪征市新集初级中学2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省扬州市仪征市新集初级中学2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了二次函数y=ax2+bx+c,下列计算正确的是等内容,欢迎下载使用。

    2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022学年江苏省扬州市梅岭中学中考数学考前最后一卷含解析: 这是一份2021-2022学年江苏省扬州市梅岭中学中考数学考前最后一卷含解析,共24页。试卷主要包含了二次函数y=,如果将直线l1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map