终身会员
搜索
    上传资料 赚现金

    2021-2022学年江西省莲花县中考数学适应性模拟试题含解析

    立即下载
    加入资料篮
    2021-2022学年江西省莲花县中考数学适应性模拟试题含解析第1页
    2021-2022学年江西省莲花县中考数学适应性模拟试题含解析第2页
    2021-2022学年江西省莲花县中考数学适应性模拟试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江西省莲花县中考数学适应性模拟试题含解析

    展开

    这是一份2021-2022学年江西省莲花县中考数学适应性模拟试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,图中三视图对应的正三棱柱是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列计算或化简正确的是(  )
    A. B.
    C. D.
    2.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为(  )
    A.米 B.米 C.米 D.米
    3.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是(  )

    A.﹣2 B.0 C.1 D.4
    4.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是(  )
    A. B. C. D.
    5.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是(  )
    A.a>0 B.a=0 C.c>0 D.c=0
    6.下列计算正确的是( )
    A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9
    C.(a-b)2=a2-b2 D.(a+b)2=a2+a2
    7.图中三视图对应的正三棱柱是( )

    A. B. C. D.
    8.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
    居民(户)
    1
    2
    3
    4
    月用电量(度/户)
    30
    42
    50
    51
    那么关于这10户居民月用电量(单位:度),下列说法错误的是(  )
    A.中位数是50 B.众数是51 C.方差是42 D.极差是21
    9.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    10.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为(  )

    A.100° B.105° C.110° D.115°
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.
    12.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.

    13.若是关于的完全平方式,则__________.
    14.如图,在△ABC中,DE∥BC,,则=_____.

    15.因式分解:3a3﹣3a=_____.
    16.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.

    17.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
    三、解答题(共7小题,满分69分)
    18.(10分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
    (1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
    (2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
    (3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.

    19.(5分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
    (1)求证:CE是⊙O的切线;
    (2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.

    20.(8分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
    表1:甲调查九年级30位同学植树情况
    每人植树棵数
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    表2:乙调查三个年级各10位同学植树情况
    每人植树棵数
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    12
    6
    根据以上材料回答下列问题:
    (1)关于于植树棵数,表1中的中位数是   棵;表2中的众数是   棵;
    (2)你认为同学   (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
    (3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
    21.(10分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:
    (1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;
    (2)求出图中a的值;
    (3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.

    22.(10分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.

    (1)在AB边上取点E,使AE=4,连接OA,OE;
    (2)在BC边上取点F,使BF=______,连接OF;
    (3)在CD边上取点G,使CG=______,连接OG;
    (4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
    23.(12分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.
    (1)求证:△ABC≌△AOD.
    (2)设△ACD的面积为,求关于的函数关系式.
    (3)若四边形ABCD恰有一组对边平行,求的值.

    24.(14分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    解:A.不是同类二次根式,不能合并,故A错误;
    B. ,故B错误;
    C.,故C错误;
    D.,正确.
    故选D.
    2、C
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    35000纳米=35000×10-9米=3.5×10-5米.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    3、C
    【解析】
    【分析】首先确定原点位置,进而可得C点对应的数.
    【详解】∵点A、B表示的数互为相反数,AB=6
    ∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
    又∵BC=2,点C在点B的左边,
    ∴点C对应的数是1,
    故选C.
    【点睛】本题主要考查了数轴,关键是正确确定原点位置.
    4、C
    【解析】
    先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.
    【详解】
    由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;
    当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.
    故选:C.
    【点睛】
    本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.
    5、D
    【解析】
    试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.
    考点:根的判别式;一元二次方程的定义.
    6、B
    【解析】
    利用完全平方公式及平方差公式计算即可.
    【详解】
    解:A、原式=a2-6a+9,本选项错误;
    B、原式=a2-9,本选项正确;
    C、原式=a2-2ab+b2,本选项错误;
    D、原式=a2+2ab+b2,本选项错误,
    故选:B.
    【点睛】
    本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.
    7、A
    【解析】
    由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解
    【详解】
    解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.
    故选A.
    【点睛】
    本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.
    8、C
    【解析】
    试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
    平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
    中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
    故选C.
    考点:1.方差;2.中位数;3.众数;4.极差.
    9、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    10、B
    【解析】
    根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
    【详解】
    ∵四边形ABCD内接于⊙O,∠A=130°,
    ∴∠C=180°-130°=50°,
    ∵AD∥BC,
    ∴∠ABC=180°-∠A=50°,
    ∵BD平分∠ABC,
    ∴∠DBC=25°,
    ∴∠BDC=180°-25°-50°=105°,
    故选:B.
    【点睛】
    本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据弧长公式l=代入求解即可.
    【详解】
    解:∵,
    ∴.
    故答案为1.
    【点睛】
    本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.
    12、
    【解析】
    先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.
    【详解】
    ∵⊙O的直径BC=,
    ∴AB=BC=1,
    设圆锥的底面圆的半径为r,
    则2πr=,解得r=,
    即圆锥的底面圆的半径为米故答案为.
    13、1或-1
    【解析】
    【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
    详解:∵x2+2(m-3)x+16是关于x的完全平方式,
    ∴2(m-3)=±8,
    解得:m=-1或1,
    故答案为-1或1.
    点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
    14、
    【解析】
    先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.
    【详解】
    解:∵DE∥BC,,
    ∴,
    由平行条件易证△ADE△ABC,
    ∴S△ADE:S△ABC=1:9,
    ∴=.
    【点睛】
    本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.
    15、3a(a+1)(a﹣1).
    【解析】
    首先提取公因式3a,进而利用平方差公式分解因式得出答案.
    【详解】
    解:原式=3a(a2﹣1)
    =3a(a+1)(a﹣1).
    故答案为3a(a+1)(a﹣1).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    16、1.
    【解析】
    试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.
    考点:等腰直角三角形;平行线的性质.
    17、﹣1
    【解析】
    根据“方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.
    【详解】
    ∵方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数,
    ∴1﹣m2=0,
    解得:m=1 或﹣1,
    把 m=1代入原方程得:
    x2+2=0,
    该方程无解,
    ∴m=1不合题意,舍去,
    把 m=﹣1代入原方程得:
    x2=0,
    解得:x1=x2=0,(符合题意),
    ∴m=﹣1,
    故答案为﹣1.
    【点睛】
    本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.

    三、解答题(共7小题,满分69分)
    18、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
    【解析】
    (1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;
    (2)根据点B的坐标画出平面直角坐标系;
    (3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.
    【详解】
    (1)△A如图所示;
    (2)如图所示,A(0,1),C(﹣3,1);
    (3)△如图所示,(3,﹣5),(3,﹣1).

    19、(1)证明见解析;(2)
    【解析】
    (1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
    (2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
    【详解】
    (1)证明:连接OC,AC.
    ∵CF⊥AB,CE⊥AD,且CE=CF.
    ∴∠CAE=∠CAB.
    ∵OC=OA,
    ∴∠CAB=∠OCA.
    ∴∠CAE=∠OCA.
    ∴OC∥AE.
    ∴∠OCE+∠AEC=180°,
    ∵∠AEC=90°,
    ∴∠OCE=90°即OC⊥CE,
    ∵OC是⊙O的半径,点C为半径外端,
    ∴CE是⊙O的切线.
    (2)解:∵AD=CD,
    ∴∠DAC=∠DCA=∠CAB,
    ∴DC∥AB,
    ∵∠CAE=∠OCA,
    ∴OC∥AD,
    ∴四边形AOCD是平行四边形,
    ∴OC=AD=a,AB=2a,
    ∵∠CAE=∠CAB,
    ∴CD=CB=a,
    ∴CB=OC=OB,
    ∴△OCB是等边三角形,
    在Rt△CFB中,CF= ,
    ∴S四边形ABCD= (DC+AB)•CF=
    【点睛】
    本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
    20、(1)9,9;(2)乙;(3)1680棵;
    【解析】
    (1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
    【详解】
    (1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
    故答案为:9,9;
    (2)乙同学所抽取的样本能更好反映此次植树活动情况;
    故答案为:乙;
    (3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
    答:本次活动200位同学一共植树1680棵.
    【点睛】
    本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
    21、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.
    【解析】
    (1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 ℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.
    【详解】
    解: (1)当0≤x≤8时,设y=k1x+b,
    将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20
    ∴当0≤x≤8时,y=10x+20.
    当8<x≤a时,设y=,
    将(8,100)的坐标代入y=,
    得k2=800
    ∴当8 综上,当0≤x≤8时,y=10x+20;
    当8<x≤a时,y=
    (2)将y=20代入y=,
    解得x=40,即a=40.
    (3)当y=40时,x==20
    ∴要想喝到不低于40 ℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.
    【点睛】
    本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
    22、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
    【解析】
    利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
    =HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
    【详解】
    (1)在AB边上取点E,使AE=4,连接OA,OE;
    (2)在BC边上取点F,使BF=3,连接OF;
    (3)在CD边上取点G,使CG=2,连接OG;
    (4)在DA边上取点H,使DH=1,连接OH.
    由于AE=EB+BF=FC+CG=GD+DH=HA.
    可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
    故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.
    23、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.
    【解析】
    试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;
    (2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);
    (2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.
    试题解析:(1)证明:∵A(0,5),B(2,1),
    ∴AB==5,
    ∴AB=OA,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    在Rt△ABC和Rt△AOD中,

    ∴Rt△ABC≌Rt△AOD;
    (2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,
    ∴∠2=∠2,
    ∴Rt△ABF∽Rt△BCE,
    ∴,即,
    ∴BC=(m+1),
    在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,
    ∵△ABC≌△AOD,
    ∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,
    ∴∠4=∠5,
    而AO=AB,AD=AC,
    ∴△AOB∽△ACD,
    ∴=,
    而S△AOB=×5×2=,
    ∴S=(m+1)2+(m>);
    (2)作BH⊥y轴于H,如图,
    当AB∥CD时,则∠ACD=∠CAB,
    而△AOB∽△ACD,
    ∴∠ACD=∠AOB,
    ∴∠CAB=∠AOB,
    而tan∠AOB==2,tan∠ACB===,
    ∴=2,解得m=1;
    当AD∥BC,则∠5=∠ACB,
    而△AOB∽△ACD,
    ∴∠4=∠5,
    ∴∠ACB=∠4,
    而tan∠4=,tan∠ACB=,
    ∴=,
    解得m=2.
    综上所述,m的值为2或1.

    考点:相似形综合题.
    24、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
    【解析】
    (1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
    (2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
    【详解】
    (1)过点C作AB的垂线CD,垂足为D,
    ∵AB⊥CD,sin30°=,BC=80千米,
    ∴CD=BC•sin30°=80×=40(千米),
    AC=(千米),
    AC+BC=80+(千米),
    答:开通隧道前,汽车从A地到B地要走(80+)千米;
    (2)∵cos30°=,BC=80(千米),
    ∴BD=BC•cos30°=80×(千米),
    ∵tan45°=,CD=40(千米),
    ∴AD=(千米),
    ∴AB=AD+BD=40+(千米),
    ∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
    答:汽车从A地到B地比原来少走的路程为 [40+40]千米.

    【点睛】
    本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.

    相关试卷

    江西省萍乡市莲花县2022年中考三模数学试题含解析:

    这是一份江西省萍乡市莲花县2022年中考三模数学试题含解析,共18页。

    江西省莲花县2021-2022学年中考数学考前最后一卷含解析:

    这是一份江西省莲花县2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是,下列各式中计算正确的是,下列命题是假命题的是等内容,欢迎下载使用。

    2022届江西省莲花县中考数学最后一模试卷含解析:

    这是一份2022届江西省莲花县中考数学最后一模试卷含解析,共19页。试卷主要包含了在同一平面内,下列说法等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map